
OPTIMISM: Enabling Collaborative Implementation of Domain
Specific Metaheuristic Optimization

Megan Hofmann Nayha Auradkar Gene Kim
Khoury College of Computer Science, Jessica Birchfeld Stanford University

Northeastern University Jerry d, CA, Cao Stanfor USA
Boston, MA, USA Autumn Hughes

Paul G. Allen School of Computer
Science, University of Washington

Seattle, WA, USA

Shriya Kurpad Anisha Nilakantan Margaret Ellen Seehorn
Kathryn Lum Human Computer Interaction Grinnell College

Kelly Mack Institute, Carnegie Mellon University Grinnell, IA, USA
Pittsburgh, PA, USAPaul G. School of Computer Allen

Science, University of Washington
Seattle, WA, USA

Emily Warnock Scott E. Hudson
Jennifer Mankof Human Computer Interaction

Paul G. Allen School of Computer Institute, Carnegie Mellon University

Science, University of Washington Pittsburgh, PA, USA

Seattle, WA, USA

ABSTRACT
For non-technical domain experts and designers it can be a substan-
tial challenge to create designs that meet domain specifc goals. This
presents an opportunity to create specialized tools that produce
optimized designs in the domain. However, implementing domain-
specifc optimization methods requires a rare combination of pro-
gramming and domain expertise. Creating fexible design tools with
re-confgurable optimizers that can tackle a variety of problems
in a domain requires even more domain and programming exper-
tise. We present OPTIMISM, a toolkit which enables programmers
and domain experts to collaboratively implement an optimization
component of design tools. OPTIMISM supports the implementa-
tion of metaheuristic optimization methods by factoring them into
easy to implement and reuse components: objectives that measure
desirable qualities in the domain, modifers which make useful
changes to designs, design and modifer selectors which determine
how the optimizer steps through the search space, and stopping
criteria that determine when to return results. Implementing opti-
mizers with OPTIMISM shifts the burden of domain expertise from
programmers to domain experts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580904

CCS CONCEPTS
• Human-centered computing;

KEYWORDS
generative design; metaheuristic; optimization; toolkit

ACM Reference Format:
Megan Hofmann, Nayha Auradkar, Jessica Birchfeld, Jerry Cao, Autumn
Hughes, Gene Kim, Shriya Kurpad, Kathryn Lum, Kelly Mack, Anisha
Nilakantan, Margaret Ellen Seehorn, Emily Warnock, Jennifer Mankof,
and Scott E. Hudson. 2023. OPTIMISM: Enabling Collaborative Implemen-
tation of Domain Specifc Metaheuristic Optimization. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3544548.3580904

1 INTRODUCTION
Optimization methods can help users generate unique solutions
while considering a variety of domain specifc goals, but building
optimizers requires the expertise and collaboration of programmers
and domain experts who tailor these methods to the domain. This
complex collaboration between programmers and domain experts
is critical, but under-supported. Existing systems tend to focus on
supporting the programmer by ofering of-the-shelf implementa-
tions of standard and advanced optimization methods. However, the
process of incorporating domain expertise to tailor these methods
to a domain is left to the development team. There are opportunities
to support the implementation of domain specifc optimizers by
enabling collaboration between domain experts and programmers.

https://orcid.org/0000-0003-2283-8587
https://orcid.org/0000-0002-4383-0536
https://orcid.org/0000-0001-8823-719X
https://orcid.org/0000-0001-5415-0539
https://orcid.org/0000-0002-5977-4305
https://orcid.org/0000-0002-2401-930X
https://orcid.org/0000-0001-7834-4530
https://orcid.org/0000-0002-8221-2458
https://orcid.org/0000-0002-6889-0244
https://orcid.org/0000-0002-3122-7094
https://orcid.org/0000-0002-6949-9079
https://orcid.org/0000-0003-3446-4738
https://orcid.org/0000-0001-9235-5324
https://orcid.org/0000-0002-0948-3251
https://doi.org/10.1145/3544548.3580904
https://doi.org/10.1145/3544548.3580904
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580904&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

Table 1: Summary of optimization methods distributed across literature survey. See Appendix A

Venue
Percentage of Total Papers at Venue Paper

Bayesian Constraint Satisfaction Topology Convex Stochastic Heuristic Metaheuristic Count

CHI [3] 11.1 11.1 7.4 14.8 7.4 25.9 22.2 27
SCF [8] 0.0 0.0 33.3 16.7 0.0 33.3 16.7 6
TOG [2] 3.6 3.6 7.1 64.3 0.0 7.1 14.3 28
UIST [9] 0.0 9.1 0.0 9.1 9.1 36.4 36.4 11

Paper Count 4 5 6 24 3 15 15 72
Percentage of Total Papers

Example Paper
5.6
[80]

6.9
[100]

8.3
[153]

33.3
[108]

4.2
[43]

20.8
[11]

20.8
[39]

100.0

We present the Optimization Programming Toolkit Integrating
Metaheuristic Intuitive Search Methods. OPTIMISM helps non-
technical domain experts and programmers collaboratively imple-
ment optimizers in diverse domains. Designers, who have domain
expertise but do not program, access optimizers through an au-
tomatically generated GUI. OPTIMISM is domain agnostic and
deconstructs many metaheuristic methods into a small set of plug-
gable operations called objectives and modifers. These components
help domain experts express their goals and modifcation strategies.
OPTIMISM provides a domain agnostic library of pluggable com-
ponents that help programmers rapidly prototype domain specifc
optimizers that apply objectives and modifers.

We have developed OPTIMISM based on three principles. First,
OPTIMISM empowers domain experts to participate in optimizer
implementation. Second, OPTIMISM enables programmers to fexi-
bly experiment with a variety of optimization methods with mini-
mal additional coding. Third, OPTIMISM produces satisfactory and
sufcient optimizers. OPTIMISM serves these principles through
a generalized and simple framework that can implement a wide
variety optimization methods. Rather than ofering a one size fts all
solution, OPTIMISM tailors to the unique properties of a domain.

We demonstrate fve tools to show how OPTIMISM: (1) supported
an Ophthalmologist and programmer in collaboratively building a
cataract lens selection tool, (2) enabled us to derive a thumb splint
optimizer from the domain expertise of occupational therapists’,
(3) assists blind designers in creating satisfactory and useful cus-
tomized tactile graphics, (4) enables us to fexibly experiment with
diferent optimizers that replicate an existing generative design tool
[32], and (5) amplifes knitters’ domain expertise.

2 RELATED WORK
Optimization methods have the the potential to make complex
design tasks accessible to new users (e.g., people with disabilities
[96, 143], clinicians [66, 69, 83]) because they can generate solutions
that are tuned to ft highly specifc needs (e.g., customized medical
devices). While individually, these optimization methods can be
simpler to develop, they are often out of the reach of domain experts
who cannot program but would beneft from these tools. Further,
optimization methods are a critical backbone to the growing do-
main of generative design for digital fabrication. In this section,
we examine how optimization has been used in digital fabrication,
the benefts and limitations of diferent optimization methods in
these domains, and existing toolkits that support implementation
of optimizers.

2.1 Optimization in Fabrication
Researchers have explored a wide range of digital fabrication opti-
mization problems (e.g., fabricating “surface like objects” [32], bal-
ancing 3D models [20, 72, 116], improving model strength [128, 142],
or generating deformable mechanisms [18, 22, 38, 99, 115, 148]). We
analysed 210 research articles from four research venues relevant
to human computer interaction and digital fabrication published
between 2016 and 2021 that included author keywords related to
digital fabrication (e.g., fabrication, 3D printing, laser cutting) or
optimization (e.g., optimize, inverse design, generative design). We
then narrowed our analysis to the 72 papers that contributed a opti-
mization method for digital fabrication. We excluded papers that do
not use an optimization method or described a generalized toolkit
related to fabrication or optimization. We inductively categorized
the broader categories of optimization used in this body of work
(Table 1). Optimization methods depend on properties of the search
space. For example, convex optimization methods are desirably ef-
cient and tend to produce quality local-maxima but rely on domains
being represented as a convex search space. Many non-technical
domain experts struggle to understand domains in this way[15].
Similarly, constraint satisfaction methods require developers to
express a domain as a solvable set of equations.

Even when the search space is not amenable to these methods,
the diversity of viable, but potentially ill-suited, optimization meth-
ods is overwhelming. In poorly characterized domains, we can turn
to heuristic, stochastic, and metaheuristic methods with make up
45.8% of the methods used in our survey. Heuristic methods (e.g.,
[29, 47, 51, 94, 119, 134, 135]) apply information about the domain
to guide the search. Blum and Roli [24] call heuristic methods “in-
tense” search methods because they narrowly apply domain specifc
strategies to fnd local maxima. Alternatively, stochastic methods
like Monte Carlo methods [43], use randomized search patterns
to jump over local maxima. Blum and Roli [24] call these methods
“diverse” because they sample widely from the search space.

Metaheuristic methods combine heuristics and stochastic meth-
ods to create high-level, problem-agnostic strategies to guide a
localized search process [129]. Diferent metaheuristics control the
“intensity” and “diversity” [24] of the optimization method with:
“intense” heuristic based search on one end of the spectrum and “di-
verse” random search methods on the other. Metaheuristic optimiza-
tion trades speed and guarantees of optimality for fexibility. These
methods work best in domains with where objectives can be clearly
defned and a variety of simple strategies for improving designs
(i.e., heuristics), but which strategy should be applied in any given

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

iteration is unclear. Essentially, metaheuristic methods are efective
at sampling a wide variety of search strategies—doing the manual
work of a designer but much faster. Like manual design, meta-
heuristic methods do not guarantee optimality or convergence on a
solution. Despite this, these methods have been efective in a wide
variety of fabrication domains (e.g., [13, 39, 43, 57, 68, 70, 87, 155]).

2.2 Multi-Objective Optimization
Often optimization involves multiple, conficting objectives. Instead
of reducing complex design tasks to one objective function, multi-
objective optimization (MOO) methods allow users to explore the
trade ofs between objectives. MOO frames optimization problems
as a design space defned by design parameters and a vector of
objectives that map designs to an objective-space. The outer bound-
ary of the objective space, where every design on the boundary
cannot improve an objective without worsening another, is called
the Pareto front. Notably, the size of the Pareto front expands expo-
nentially relative to the number of objectives, making exploration
of the Pareto front intractable for many high-dimension problems.
Methods for fnding the Pareto front is a growing area of research;
like optimization methods more broadly, no method works well
or guarantees optimality in all domains. The principle challenge
of building a domain specifc optimizer is to fnd an optimization
method that is well matched to the domain and objective space and
users need tools to help them create these unique optimizers.

To fnd the Pareto front, an optimization method must explore
the design space by fnding as many sample designs as possible that
maximize diferent combinations of objectives. There are two main
approaches to searching the design space [42]. The frst are methods
that decompose the search into many single-objective optimization
problems [139] by either scalarizing (i.e., weighting and combining
each objective) (e.g., weighted-sum method [97]) or constraining
objectives (e.g., �-constraint methods [59]). Through many runs of
these single-objective optimizers, the multi-objective optimizer can
sample new regions of the Pareto front. The second set of methods
build up the population of discovered designs without being guided
by a specifc objective function using recombination and mutation
of the population (e.g., evolutionary methods [37]). Particularly
in discrete domains, both decomposition and population methods
may apply metaheuristics when generating new results that se-
lect for some combination of: Pareto dominant designs, designs
that dominate decomposed objective functions, and indicators of
improvement [28, 90]. In many real world problems, where the
number of objectives may be high (e.g., greater than three), the
methods may be guided towards high priority regions of the Pareto
front either by interaction with the user (e.g.,[121]) or by Bayesian
methods [53].

Given a Pareto front, users are challenged to choose a solution.
One approach is to only search for the section of the Pareto front
that is relevant to the designer by narrowing the search with a
priori rankings of objectives (e.g., user-set weights in scalariza-
tion) [103]. Depending on the domain, the user may not be able
to provide quality weights and this can result in designs that do
not meet their needs. However, these approaches one or only a few
solutions making it trivial for users to select a solution if a satis-
factory solution is discovered. Alternatively, a posteriori methods

search for a wide region of the Pareto front and then ask users to
make decisions based on discovered trade-ofs between objectives
[103]. Particularly with many objectives, this may result in the user
having to choose from many possible solutions. Researchers have
proposed a variety of visualization tools to help users make deci-
sions (e.g., [78, 92, 131, 138]), however each of these visualizations
presume that the designer understands key optimization concepts.
For example, Smedberg and Bandaru’s interactive knowledge dis-
covery tools presumes that designers understand that optimization
methods imply a mapping from a design space to an objective space
[126]. In many relevant domains this assumption may not hold;
for example, blind designers cannot access such visualizations for
decision making [67] and prior work shows that clinicians prefer
clinical CAD tools to follow a prescriptive model that generates
only one efective solution [69]. Again, method selection depends
on the domain and the needs and preferences of designers.

2.3 Toolkits to Support Optimization
To evaluate optimization toolkits, we can consider criteria described
by Olsen [111]: “fexibility” to rapidly making design changes; “ex-
pressive leverage”, accomplishing “more by expressing less”; “expres-
sive match” of the toolkit model to the user’s mental model of the
problem; and “ease of combination” of simple primitives into a wide
set of complex solutions. Krish describes optimization as consisting
of: a search space or domain, a way of generating variation in that
domain, and a method for evaluating designs in that domain [82].
A toolkit for optimization, ideally, gives developers fexible ways to
express these components in a way that matches their mental model
of the domain. Most optimization toolkits are infexible and only
ofer established optimization algorithms, rather than recombinable
primitives that enable programmers to prototype their own solu-
tions. Consider, toolkits that support metaheuristic optimization
(e.g., [5–7]), MOO (e.g., [23]), or optimization more broadly (e.g.,
[1, 4]). These systems are infexible; limited to expressing existing
algorithms. Further, their expressive match is dependent on how
well standardized format ft users’ mental models. These tools are
designed for experienced programmers rather than domain experts.

Toolkits in the space of convex optimization [27] and Bayesian
optimization [56] ofer a promising approach. Burnell et al. de-
veloped GPKit [27] with an ethnographic study of experts who
use convex optimization. The toolkit supports highly fexible de-
velopment of a convex expression of a design space that has an
expressive match with their users. These users have broader techni-
cal backgrounds but do not included domain experts who have little
mathematical or programming experience. Similarly, Golovin et al’s
Google Vizier [56] helps programmers tune Bayesian optimization
methods to solve new problems where characteristics of the domain
space are unknown (e.g., cookie recipes, GUIs). Vizier is a highly
fexible framework and can be leveraged to express a variety of
black-box optimization problems. Our goal is to contribute to the
same space of toolkits by focusing on heuristic methods, stochastic
methods, and metaheuristic methods. By combining the expressive
match of heuristic methods and the fexibility of stochastic methods,
we aim to support new users in a wide set of domains.

CHI ’23, April 23–28, 2023, Hamburg, Germany

3 OPTIMISM TOOLKIT
OPTIMISM1 enables domain experts and programmers collabora-
tively implement a domain specifc optimizer and automatically
produce a GUI for designers. The domain expert and programmer
provide OPTIMISM with domain specifc heuristic libraries that
express design strategies in the domain. These heuristics are iter-
atively applied by metaheuristic optimizers which programmers
confgure with elements of OPTIMISM’s domain agnostic library.
In the following sections, we describe OPTIMISM’s: three guiding
principles, three types of users, framework structure, and how it is
used. We contextualize the system with the scenario of creating a
cookie optimizer based on heuristics from a cooking show [102].

3.1 Guiding Principles
Empowerment of Domain Experts. Giving domain experts the

fexibility to describe the domain and search strategies in a GUI.

Flexible Optimizer Construction. Optimizers can be reconfgured
through modular, easy to understand, components.

Produce Satisfcing Designs. Optimizers efciently (e.g., faster
than manual design) produce satisfactory and sufcient (e.g., equiv-
alent to or better than manual results) designs [26].

3.2 OPTIMISM’s Three Users
We distinguish between three types of users: domain-experts, pro-
grammers, and designers . In a development stage, a programmer
and domain expert collaboratively develop a domain specifc op-
timizer by refning design representations and testing diferent
optimizer confgurations. In the design phase, independent of the
domain expert and programmer, the designer uses this optimizer
to produce designs that satisfy their needs. Notably, we do not
assume that any of these users are familiar with optimization con-
cepts. Programmers are only expected to have basic programming
experience (e.g., implementing classes and functions) and neither
domain-experts nor designers need to program. Instead, they must
have relevant knowledge from a domain such as an understanding
of relevant design variables, goals, and their relationships. Domain-
experts and designers have the same backgrounds and are only
distinguished by the phase they participate in.

3.3 System Overview and Defnitions
We have developed simple abstractions that can capture metaheuris-
tic optimization methods. OPTIMISM optimizers consist of plug-
gable components (Table 2) from a domain specifc heuristic library
and a domain agnostic library. The optimizers are seeded with
design representations and then follow an iterative optimization
process (Algorithm 1). First, these designs are scored by an objec-
tive function which domain experts and designers construct from
domain specifc objectives. The evaluated designs enter a design
population which has a limited capacity set by the programmer.
As that capacity is exceeded, random designs, with a bias towards
poor performing designs, are pruned from the population. Second,
a domain agnostic design selector chooses a design from the popula-
tion for the next iteration. Then a domain agnostic modifer selector

1Framework available at https://github.com/mhofmann-Khoury/optimism-toolkit

Hofmann et. al.,

1 Input ����� : a set of starting designs provided by designers
2 Output D: the population of generated designs
3 D ← {};
4 for � ∈ ����� do // Evaluate Seed Designs

5 �� ← �������� (�);
6 add � to D sorted by �� ;
7 end
8 while not ���� (D) do // Main Optimization Loop

9 � ← ������_������(D) ;
10 � ← ������_���� � ��� (�, H, D) ;

′ 11 � ← �(�) ;
12 �� ′ ← �������� (� ′) ;
13 add � ′ to D sorted by �� ′ ;
14 prune D to population_cap;
15 end
16 return D;

Algorithm 1: The iterative structure of an optimizer.

chooses a domain specifc modifer to apply to the selected design.
The modifer changes the design, producing a new design which
is evaluated and added to the population; modifers step through
the design space. When the population of designs meets a stopping
criteria it is returned to the designer. Otherwise, the cycle repeats.

In the following sections, we describe the components of an
optimizer organized by their source libraries. OPTIMISM’s abstrac-
tions help to minimize the workload and level of technical expertise
needed from the domain expert. Many aspects of OPTIMISM are
domain agnostic allowing them to be readily reused and swapped
out when creating an optimizer without input from a domain expert.
A key exception is the heuristic library which organizes domain
specifc code into easy to implement and modular components.

4 DOMAIN SPECIFIC HEURISTIC LIBRARY
Domain experts and programmers implement the domain specifc
components of their optimizer and organize them in a heuristic
library. The domain expert frst describes how to represent designs
and the programmer creates a corresponding design representation.
OPTIMISM does not require a specifc structure for representations
since they are only accessed by objectives and modifers imple-
mented by the programmer. In most of our demonstrations, a simple
set of parameters was a sufcient representation. For example, Chef
Alton describes cookies as recipes and Steve implements a Python
class with a parameter for each ingredient amount.

Next, the domain expert describes how to evaluate low-level
design goals. Continuing the example, Chef Alton describes ways
of estimating key properties of a recipe (e.g., melting-point, acidity)
that will afect the texture of the cookie. Adjusting these proper-
ties will help Alton design diferent cookie textures; for instance he
notes that crispy cookies have “a relatively low melting temperature
so the batter spreads before setting” [102]. Each of these properties
is defned by proportions of key ingredients which Steve can evalu-
ate with simple functions. The domain expert also describes how
they modify designs. For example, Alton explains how to adjust the
proportions of ingredients to modify diferent key properties and
Steve can implement this as adjustments to ingredient amounts.

https://github.com/mhofmann-Khoury/optimism-toolkit

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 2: A summary of components of an OPTIMISM optimizer.

Term Defnition Notation Example

Domain Specifc
Heuristic Library of domain specifc elements implemented by domain experts and programmers.
Library
Design A data structure that represents designs in a domain � A set of parameters that defne a cookie recipe Representation

A function that evaluates how well A function that compares a cookie recipe’s estimated Objective 0 ≤ � (�) ≤ 1∀� ∈ Oa design meets a specifed criteria or design goal melting point to a target value set by a designer.
Objective A function that evaluates the weighted set of

�������� (�) see Equation 1 Function objectives to assess a design’s quality
A function that creates a new design Modifer �(�) = � ′∀� ∈ M A function that sets the fat used in a recipe to butter by modifying a generated design.
A set of weights between modifers and objectives Heuristic A designer sets a weight of 2.0 between a that express how efective a modifer is ��→� ∈ HMap low-melting point objective and a butter modifer expected to be at improving an objective

Domain Agnostic
Metaheuristic
Library
Design
Population
Design
Selector
Modifer
Selector
Stopping
Criteria

Library of domain agnostic components of a metaheuristic optimizer

A data structure that organizes generated designs D see subsection 5.1

A function that selects a design from A function which returns the highest scoring
������_������(D) = � the design population design that has been generated.

A function that selects a modifer A function that selects the modifer that is
������_���� � ��� (�, H, D) = � to use on a design expected to most improve the design

A function that determines if A function that returns True if
���� (D) = {����, �����}the optimization results should be returned the design scores more a threshold value.

4.1 Objectives
The optimizer’s objective function measures how well designs meet
the designer’s goals. OPTIMISM supports metaheuristic methods
that reduce multi-objective optimization problems into scalarized
objective functions weighted by the designer’s preferences. Pro-
grammers and domain experts collaboratively build a library of
objectives. Designers combine these objectives to defne their spe-
cifc design goals. Consider some cookie objectives that can be
combined to make crispy cookies. Alton explains that crispiness is
increased by lowering the batter’s melting point. A high portion of
low-melting point fats (e.g., butter) and lower acidity will reduce
the melting point [102]. Thus, objectives that measure the portion
of butter and acidity can maximizes crispiness.

In OPTIMISM, designers construct scalarized multi-objective
functions by defning a weighting a set of objectives based on their
importance. Optimizers seek to maximize this scalarized function.
Objectives are functions, implemented by the programmer and do-
main expert, that estimates how well a design performs under some
criteria by returning a normalized value between 0 and 1. Given a
set of objectives, � ∈ O, with weights �� , the customized objective
function will be the weighted sum of objectives’ score (Equation 1).
As we will demonstrate, domain experts can often defne simple
objectives for a variety of important criteria that designers can
combine to defne a variety of multi-objective problems.

∑
max � (�) = ��� (�) (1)
�

� ∈O

4.2 Modifers
Modifers express how designs can be improved to maximize the
objective function. Modifers are functions that take in a design
and produce a new, slightly diferent, design. They take small steps
through the search space similar to steps taken by a designer when
prototyping. Consider four simple cookie modifers: two change
the proportion of butter to shortening and two that change the
proportion of baking soda to baking powder. These modifers will
directly infuence the melting point of the batter and thus the crispi-
ness of the cookies. Note that the modifers change proportions
of ingredients, not just amounts. This ensures that the amount of
ingredients never gets out of proportion (e.g., cookies made only of
butter). Ensuring modifers do not violate design requirements is
left up to the development team.

4.3 Heuristic Maps
Heuristics express rules of thumb for improving objective scores.
Diferent modifers will afect diferent objectives; heuristics en-
capsulate this relationship. In OPTIMISM, a modifers tendency to
improve an objective is expressed with an heuristic weight. That is
a modifer, �, that should improve an objective, � , has a heuristic
weight ��−>� . We use heuristic weights to measure the expected
value of applying a modifer to a design. The expected value is the
sum of potential increases in objectives’ scores between a design

′ � and the resulting design from applying a modifers, �(�) = � ,
multiplied by the heuristic weight (Equation 2). ∑

� (� ′ ,�) = ��−>� �� (1 − � (�)) (2)
� ∈O

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

1.50.5

Low
Acidity

1.5

Spreadable
Fat

21

1.50.5

High
Acidity

1.5

Solid
Fat

21

Increase
Butter

Increase
Baking
Soda

Increase
Shortening

Increase
Baking
Powder

Figure 1: Example Heuristic Map

1 Input 𝑠𝑒𝑒𝑑𝑠: Sample designs provided by domain experts
2 Input O: Objectives
3 InputM: Modifiers
4 Input 𝑅𝑜𝑢𝑛𝑑𝑠: the number of iterations to generate samples
5 Output H: The estimated heuristic map
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑠𝑒𝑒𝑑𝑠;
7 𝑑𝑒𝑠𝑖𝑔𝑛𝑠_𝑏𝑦_𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 ← {} ;
8 𝑜_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠_𝑏𝑦_𝑚 ← {} ;
9 for 𝑟𝑜𝑢𝑛𝑑 ∈ 𝑅𝑜𝑢𝑛𝑑𝑠 do
10 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ← {} ;
11 for 𝑑 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 do
12 for𝑚 ∈ M do
13 𝑑′ ←𝑚(𝑑) ;

′14 add 𝑑 to 𝑑𝑒𝑠𝑖𝑔𝑛𝑠_𝑏𝑦_𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 [𝑚];
15 add 𝑑′ to 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ;
16 for 𝑜 ∈ O do
17 if 𝑜 ′(𝑑) < 𝑜 (𝑑) then
18 increment 𝑜_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠_𝑏𝑦_𝑚[𝑜] [𝑚] ;
19 end
20 end
21 end
22 end
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ;
24 end
25 H← {};
26 for𝑚 ∈ M do
27 for 𝑜 ∈ O do
28 𝛼𝑚−>𝑜 = 𝑃 (𝑜↑ |𝑚) ; // See Equation 3

29 if 𝛼𝑚−>𝑜 > 0 then
30 H[𝑜] [𝑚] ← 𝛼𝑚−>𝑜 ;
31 end
32 end
33 end
34 return H;

Algorithm 2: Sample Data Generation.

𝑑′| ∈ 𝐷𝑚 |𝑜 (𝑑 ′) < 𝑜 (𝑑) |
𝑃 (𝑜↑ |𝑚) = (3)|𝐷𝑚 |

We make the relationship between objectives and modifiers ex-
plicit in a heuristic map (Figure 1) composed of these weighted
pairs. Each modifier in a heuristic map can be mapped to multiple
objectives and visa-versa. Again, consider the cookie example. In-
creasing the proportion of butter will likely improve a spreadable
fat objective. Similarly, increasing the proportion of baking soda
should improve a low-acidity objective. To a lesser extent, because
Chef Alton notes that butter is slightly acidic, increasing the butter
should also improve the low-acidity objective. Domain experts and
designers, without the help of programmers, can either manually
construct heuristic maps in the automatically generated GUI or
have OPTIMISM generate them from a curated set of seed designs.

Our tuning algorithm estimates heuristic weights given a set
of designs, 𝐷𝑚 , generated by applying a modifier to a previously
generated design. We set the heuristic weight to the proportion
of new designs that increased the objective score over all designs
generated by the modifier (Equation 3). Domain experts seed the
tuning method with curated designs. Over multiple rounds, we
apply each modifier to the designs and track increases in each
objective’s score (Algorithm 2).

The heuristic library is the foundation of domain specific optimiz-
ers. The highly flexible structures of composing objective functions
from weighted objectives, modifiers as simple strategies for im-
proving designs, and heuristic maps that associate modifiers with
the objectives scaffolds heuristic implementation in a way that is
accessible to domain experts and programmers.

4.4 Implementing Heuristic Libraries

1 r e g i s t r y = mak e _ r e g i s t r a r ()
2 @reg i s t r y (Heur i s t i c_Component . Ob j e c t i v e ,
3 " h i g h _ s o l i d _ f a t ")
4 @ inv e r s e _ o b j e c t i v e
5 @reg i s t r y (Heur i s t i c_Component . Ob j e c t i v e ,)
6 def h i g h _ s p r e a d a b l e _ f a t (c ook i e : Cookie) −> f l o a t :
7 return cook i e . b u t t e r _ cup / 1 . 0
8 @reg i s t r y (Heur i s t i c_Component . Mod i f i e r)
9 def add_bu t t e r (cook i e : Cookie , inc rement : f l o a t = 0 . 2 5) :
10 cook i e . s ho r t en i ng_ cup s −= inc rement
11 cook i e . b u t t e r _ cup += inc rement
12 @reg i s t r y (Heur i s t i c_Component . Mod i f i e r)
13 def add_ sho r t en ing (cook i e : Cookie ,
14 inc rement : f l oa t = 0 . 2 5) :
15 cook i e . s ho r t en i ng_ cup s += inc rement
16 cook i e . b u t t e r _ cup −= inc rement

Figure 2: Example cookie heuristic library code registered to
the cookie heuristic registry using Python decorators.

To build a domain specific heuristic library, the programmer
writes objective and modifier functions with a signature that starts
with a parameter for the design (e.g., a cookie recipe) being eval-
uated or modified and any additional default parameters. Then,
the programmer registers these components in the library using a
python decorator (e.g., Figure 2.2). The decorator stores a pointer
to the function in a domain specific registry (Figure 2.1). When
the heuristic map interface is generated, it will reference this reg-
istry and make each registered element available with the given

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: Objective and heuristic weights are set in a GUI.

function-name or an optional identifier provided in the decora-
tor (e.g., “high_solid_fat”). We provide a specialized set of deco-
rators which can modify the output of objectives and modifiers
based on common patterns. For instance, the inverse decorator (Fig-
ure 2.4) will return the inverse value of an objective (e.g., 𝑖𝑛𝑣 (𝑜, 𝑑) =
1 − 𝑜 (𝑑)). A domain specific GUI is generated from the registry
(Figure 3) with objectives listed in a drop down menu enabling
designers to assign weights to objectives for a specific optimization.
Additional parameters can be modified in the Objective Parame-
ters column of the weighting table. Similarly, designers create a
heuristic map by associating modifiers with objectives.

5 METAHEURISTIC LIBRARY
Metaheuristic optimization combines domain specific heuristics
with stochastic search strategies to form a wide variety of optimiza-
tion methods. OPTIMISM separates the domain specific and domain
agnostic components of these methods to reduce the burden on
development teams. Metaheuristic methods are characterized by
how designs are chosen and modified in each iteration. Simulated
annealing, for example, is defined by how designs are selected in
each iteration, but design modification is left up to the programmer.
Monte-Carlo Markov chains, on the other hand, are defined by the
probabilities of moving from one state to the next (i.e., modifier
selection) but cannot jump around the discovered design space.
Making these different strategies pluggable enables programmers
to mix and match methods until they find one suited to the domain.
Programmers may identify established methods that are well suited
to their domain or compose new methods.

We present OPTIMISM’s domain agnostic library which defines
a optimizer’s metaheuristic strategy. In OPTIMISM, metaheuristics
consist of three components: stopping criteria, design selectors, and
modifier selectors. Stopping criteria determine when to stop iterat-
ing. A design selector chooses a design to modify in an iteration.

A modifier selector determines which modifier to apply to that
design. Each of these components make their decisions based on
the scalarized objective function and objective scores, the heuristic
map, and information collected during optimization in a design
population. Our domain agnostic library enables programmers to
implement a wide variety of optimizers by mixing and matching
these elements without writing any new optimization code.

5.1 Design Population

Table 3: The types of information maintained by an opti-
mizer’s Design-Population.

Value Key to Generated Designs
Iterations Iteration which generated the design.

Scores Objective function score of design.
(i.e., 𝑓 (𝑑), see Equation 1)

Score
Differences

Difference in score from prior design.
(i.e., 𝑓 (𝑑′) − 𝑓 (𝑑)).

Objective Scores Individual Objective scores of design.
(i.e., 𝑜 (𝑑)∀𝑜 ∈ O).

Objective Score
Differences

Differences in objective scores from prior design.
(i.e., 𝑜 (𝑑′) − 𝑜 (𝑑))

Modifier Used Modifier used to generate design.

OPTIMISM organizes and sorts generated designs in a domain
agnostic format called the design population. It collects data about
how well a design performed under the objective-function and
individual objectives, the change from the prior design, the iteration
in which the design was generated, and the modifier that generated
it (Table 3). The design population is self-pruning. When it reaches
a maximum size it will randomly remove a design to maintain that
capacity. Pruning is biased to remove the worst performing designs.

The design population will be returned to the designer after
optimization so that they can access and organize designs based on
different criteria. Additionally, after optimization, we use Deb’s [42]
algorithm for finding the non-dominated front of a set of designs to
calculate the Pareto set. Designers can view designs on the Pareto
set or sorted by the scalarized objective function score.

5.2 Stopping Criteria
The domain agnostic library provides four parameterizable stopping
criteria that determine when the optimizer should stop iterating and
return the results to the designer (Table 4). We derive three these
from common stopping criteria across our literature survey. The
fourth method introduces the concept of Pareto dominance: designs
that cannot improve individual objectives without trading off other
objectives. By stopping when many iterations have not returned a

Table 4: Programmer parameterizable stopping criteria

Stopping Criteria Programmer’s
Parameters Definition

Exhausted Iterations 𝐼 : maximum iterations Returns true when the 𝐼 is reached.
Matched
Threshold Score

𝑁 : Design count
𝑠: threshold score

Returns true when 𝑁 designs have been
generated with Objective Function scores ≥ 𝑠

Scalarized Objective
Function Converged

𝐼 : iterations
Δ: score changes

Returns true if 𝐼 iterations have passed with no more
than Δ difference in Scalarized Objective Function Scores

Pareto Set Converged 𝐼 : iterations
Δ: score changes

Returns true if 𝐼 iterations have passed without discovering
a design that dominates the prior design (i.e., 𝑑′ ⪯ 𝑑).

CHI ’23, April 23–28, 2023, Hamburg, Germany

Pareto dominant design, this stopping criteria returns results when
a region of the Pareto set has likely been discovered. Each stopping
criteria is a function that, given the design population, will return
true if the optimizer should stop. It is trivial to construct a variety of
more complex stopping criteria by logically combining the results of
these categories. For instance, we may want to continue searching
for a local-maxima after a threshold score has been met. To do this
we can combine the results of a threshold and convergence stopping
criteria so it only stops when both criteria are met. Similarly, we
can set the optimizer to stop at a maximum number of iterations by
returning the value of the combined stopping criteria (i.e., threshold
and convergence) or an exhausted-iterations stopping criteria.

5.3 Design and Modifer Selectors
Selecting a design and modifer are critical steps in each iteration
of an optimizer and defne the metaheuristic method. Particularly
in bumpy domains with many local maxima, randomness is in-
troduced into this process. These methods are non-deterministic
and this makes it difcult to identify strategies that will efciently
satisfce the designer’s needs. By switching out pluggable design
and modifer selectors, programmers can test a variety of methods.
Additionally, a narrow subset of these selectors can be accessed by
curious domain experts and designers through a GUI (Figure 5).

Design and modifer selectors follow the same procedure shown
in Algorithm 3. The optimizer inputs a set of values sorted by the
programmer’s criteria. Sorting functions are specifc to either de-
sign or modifer selection. Additionally, a selector is defned by a
selection probability function, � . In many cases this function re-
turns a static probability threshold. Some metaheuristic methods
use more complex probability functions. For example, simulated
annealing increases the probability of selecting high-performing
designs as the number of iterations increases (i.e., the size of the
design population). This cooling function will converge on a high
scoring region later in the optimization process. OPTIMISM in-
cludes a variety of parameterizable cooling schedules based on
existing methods [10]. The selector creates a probability threshold
by passing the current state of the design population and heuristic
map to the probability function. Given this probability threshold,
each value is considered in the sorted order. If a random variable is
less than or equal to the threshold, the current value is selected. If
the threshold is never met the last value in the sorted set is selected.

5.3.1 Design Selectors. Design selection is critical to the optimiza-
tion process. An optimizer that chooses high scoring designs quickly
climbs towards a local maximum, but can miss distant, higher-
scoring regions. Alternatively, choosing a design randomly will
jump to a new regions but will not climb to a local maximum. Stan-
dard optimization algorithms balance between selecting quality
designs and randomly searching by considering factors such as
how long the optimizer has been running, the quality of previously
discovered designs, and how often each design has been visited.
OPTIMISM’s library of design selectors provides a general, domain
agnostic strategy for managing these trade-ofs.

The primary way to customize design selectors is by changing
the sorting order of the designs. Most often we choose a design
with a bias towards those that are performing the best. This is true
for a variety of standard metaheuristic methods (e.g., evolutionary

Hofmann et. al.,

1 Input ������: The set of designs or modifers to select from
2 Input � : A probability function to set the selection

threshold
3 Input ���� : A sorting function for the values
4 Output �����: A selected design or modifer to use in the

optimizer iteration �ℎ���ℎ��� ← � (D, H) ;
5 ������_������ ← ���� (������, D, H) ;
6 for � ∈ ������_������ do
7 �̂ ← random value between 0 and 1;
8 if �̂ ≤ �ℎ���ℎ��� then
9 return � ;

10 end
11 end
12 return last value in ������_������ ;

Algorithm 3: Selector Algorithm

methods [52]). This is done by sorting the designs from highest to
lowest objective function scores. Programmers can further refne
this by sorting by individual objective scores (e.g., Guided Local
Search [137]). Other metaheuristic methods (e.g., Tabu search [55],
ant-colony optimization [46]) select designs based on their visita-
tion history. For these cases, the population can be sorted based on
how many times the same design was generated. Similarly, we can
bias the selector towards recent designs by sorting by the iteration
that generated each design (e.g., iterative local search [93]).

5.3.2 Modifier Selectors. While design selectors ofer a variety of
strategies for jumping around the discovered search space, the opti-
mization process is only as diverse as the designs that are generated
by modifers. Each modifer in the heuristic map will generate a
neighboring design to the currently selected design. Modifer se-
lectors decide which neighbor to generate and add to the design
population. Choosing a modifer with each iteration is independent
from design selection, but equally important. Modifer selectors se-
lect (see Algorithm 3) modifers from the heuristic map. OPTIMISM
ofers three sorting values (� (�)) for modifers.

Actual Value. A modifer’s actual-value measures the diference
between the current design’s objective function (Equation 4) or
individual objective (Equation 4) scores. Since this requires the
execution of each modifer the resulting designs are cached and
used once a modifer is selected.

� (�) = � (�(�)) − � (�) (4a)

� (�) = � (�(�)) − � (�) (4b)

Expected Value. To avoid executing all modifers we estimate how
much a modifer will improve the design using Equation 2 and the
heuristic weights. The expected values can serve as the probability
of state changes in methods such as Monte-Carlo Markov chains.

Historical Value. The design population tracks both the changes
in objective scores and which modifers are used to create designs.
From this information, we can keep track of how often, and by how
much, each modifer has improved prior designs. Just as we did

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

1 op t im i z e r = Opt im i ze r (r e g i s t r y . heur i s t i c _map ,
2 b i a s e d _ t owa rd s _b e s t _d e s i gn ,
3 r e a ch ed _ t h r e s ho l d _ s c o r e ,
4 b i a s ed _ t o _expe c t ed _be s t _mod)
5 d e s i g n _popu l a t i o n = op t im i z e r . o p t im i z e ([Cookie ()])

Figure 4: Sample Optimizer Metaheuristic confguration.

Figure 5: GUI for adjusting metaheuristics.

in the heuristic map tuning algorithm (see Algorithm 2), we can
use this information to estimate the probability that a modifer will
improve the design (see Equation 3). This sorting criteria is useful
for implementing methods like Ant-Colony optimization where we
want to bias modifer selection towards those that have a history
of improving designs.

6 DEVELOPING WITH OPTIMISM
Once the domain expert and programmer has implemented a de-

sign representation and heuristic library, confguring an optimizer
only requires the programmer to assign a stopping criteria, de-
sign selector, and modifer selector (Figure 4). Programmers choose
these components from OPTIMISM’s library and can refne their
behavior by adjusting their parameters. Notably, building diferent
optimizers only requires a change in these pluggable components
and no new code. Figure 5 shows a simple GUI for switching out
design selectors, this gives curious domain experts and designers a
limited ability to adjust metaheuristics, however they cannot ad-
just selector parameters without programming. In most cases, we
expect programmers will do this work directly in code.

Because it is easy to create a wide variety of optimizers with dif-
ferent combinations of metaheuristics, the new challenge is to fnd a
satisfcing optimizer. The programmer must try out diferent meta-
heuristics until they fnd one that converges, at least, faster than a
designer could manually produce a design and results in designs
that are, at least, as good as what designers produce. To make this
process easier, we provide a evaluation tools to experiment with dif-
ferent optimizers. The frst tool runs an optimizer many times with
random scalarizations of the objectives and collects the resulting
scores and convergence times. Using this data, programmers can
compare the efcacy and efciency of many diferent optimizers.
We use this in our demonstrations to compare diferent optimizers
in the domains. The second evaluation tool collects the discovered
Pareto set from many runs of an optimizer with random scalariza-
tions, similar to an all-weighted sums method for estimating the
Pareto front. This enables programmer to examine the trade ofs
between diferent objectives and compare how efectively diferent
optimizers discover the Pareto set. Figure 6 shows a visualization
of the Pareto front of chewy vs cakey cookies.

Figure 6: Discovered Pareto front of cookie objectives.

Figure 7: GUI for displaying optimization results and sample
cookies generated with diferent objective functions.

7 DESIGNING WITH OPTIMIZERS
The optimizers produced by teams of domain experts and program-
mers capture and represent substantial expertise. While designers
can use default objective functions and heuristic maps provided by
the domain expert, we expect they will often have domain expertise
and will use OPTIMISM’s GUI to modify the search process. The
key diference between domain experts and designers is that de-
signers do not have access to a programmer. They cannot program
new objectives or modifers, nor can they change the design repre-
sentation structure. Any designer could use Chef Alton’s optimizer
with minimal expertise, however a curious and clever baker could
also recombine objectives and heuristics to generate new cook-
ies. For example, using objectives that measure solidity of fat and
require higher acidity to create pufy cakey cookies [25]. Mixing
and matching low-level objectives and heuristics gives designers
greater fexibility in what the optimizers can produce. Designs gen-
erated by an optimizer are displayed in a table sorted by objective
function scores (Figure 7). Designers select the results to view them
in a domain specifc format (e.g., cookie recipes, web pages, 3D
models, vector graphics, knitting instructions). More advanced vi-
sualizations of the optimization results are left to future work (e.g.,
visualizing the Pareto set).

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

Table 5: Summary of fnal optimizer confgurations across all demonstrative tools.

Demonstration Design-Selector Modifer-Selector Stopping-Criteria

Cookies Best Design Expected Best Modifer Pareto set has not changed in 100 iterations

Cataract Lenses Highest score wtih increasing probability Best-known modifer with 85% probability Converge after 10 iterations with <5% change
Splints Highest score wtih increasing probability Expected Best Modifer Reached threshold 95% perfect score
Tactile Graphics Highest score with 85% probability Modifer with greatest history of success 1000 iterations
Tile-Decors Highest score with increasing probability Best-known modifer for most important objective Reached threshold 95% perfect score
Knitting Highest score with 85% probability Expected best modifer with 85% probability 10,000 iterations

8 DEMONSTRATIONS
We used OPTIMISM to build fve domain specifc optimizers, two
of which have been published in prior work [67, 68]. Each domain
is built on the domain expertise of non-technical experts which we
source by analysing design patterns from online communities [64],
collaborating with researchers and users in the domain [67], and by
building on prior community engagements [69]. In our evaluation
of these demonstrations we will refer to objective function scores
as percentages of the maximum possible score (i.e., score of 1 on all
objectives) to normalize the results across many diferent domains
and objective functions. The fnal confgurations of each optimizer
are shown in Table 5.

8.1 Cataract Lens Selection
We recruited David, an Ophthalmologist, and Brian2, a program-
mer, to build an optimizer that selects prosthetic lenses for cataract
surgery. Over two weeks they coordinated by email to build their
optimizer. As David explained, choosing a lens depends on a vari-
ety of factors such as patient outcomes, available lenses, and error
tolerances. Cataract lens are defned by an a-constant dependent on
lens models, and an inter-ocular-lens power (IOL) which comes in
0.5 increments. Brian implemented this design representation with
two parameters. David explained that he assesses lenses based on
a variety of formulas [63, 118] that predict the patient’s resulting
refraction value (i.e., their glasses prescription). These formulas
will predict diferent values and David weights them depending
on information about the patient. Brian encoded these formulas
as objectives that compare the predicted refraction to David’s tar-
get refraction. Brian implemented three modifers that chose a
random a-constant from available models and incremented/decre-
mented the IOL. We provided Brian with example code from other
demonstrations and we were available to answer his questions
about implementing the library and optimizer over email. After
some trial and error, he chose a default design selector that sorts
design by objective function scores and selects designs with increas-
ing probability over time. His modifer selector sorts modifers by
their actual-value and selects with a static 85% probability. He uses
actual-values instead of expected-values because he felt that this
would increase David’s confdence in the results and came at little
cost to efciency since his three modifers are very fast. He used
a convergence stopping-criteria that halts when 10 samples have
stayed with in a 5% diference of objective function scores.

2Participant selected psuedonyms

Brian and David had no prior experience implementing meta-
heuristic optimizers. Despite their lack of experience, their opti-
mizer selected appropriate lenses. David provided de-identifed
patient data and lens selections for 10 prior patients. We compared
his choices and those made by the optimizer. OPTIMISM selected
the same a-constant with 100% accuracy and the correct IOL with
80% accuracy. In the two samples where the IOL difered from
David’s decision, it was by a single increment. David explained that
this was a safe margin of error similar to the diferent choices two
Ophthalmologists would make. Further, in the two cases where the
optimizer difered from David, his choice was the second highest
scoring option and visible to him in the GUI.

8.2 Occupational Therapy Splints

Figure 8: Splints are thermoformed to the patient’s hand.

OPTIMISM’s modifable objective functions can enable an Occu-
pational Therapist (OT) to customize splints to a patient’s needs.
We built a thumb splint optimizer based on feld notes from a six
month feld study in OT clinics [69]. We represent splints with a set
of parameters from a standardized splint pattern used by those OTs.
We provide modifers that increment and decrement each parameter
by 1mm and derived objectives based on the OT’s expertise:

Fit to Patient. The smaller the diference between a splint’s pa-
rameters and corresponding patient measurements, the better it will
ft. Fit is critical for ensuring splints properly restrict movement.

Restriction. Splints restrict movement of specifc joints to support
healing. OTs estimate the restriction by the width of the wings of
the splint. Increasing width increases restriction.

Durability. Splints are more likely to break where wider wings
and cooling holes introduce material strain. OTs estimate durability
with cooling-hole density and inversely to the wing widths.

Comfort. Restriction and durability reduce comfort which leads
to abandonment. OTs estimate comfort by the density of cooling
holes and reductions of the lower-wing which can irritate the wrist.

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 9: Percentage of perfect score across Uniform (U),
Automatic (A), and Expert’s (E) weights.

By changing the objective weights, we can quickly customize
splints. Traditionally, OTs will spend at least one entire patient
appointment manually sizing a splint. This optimizer generates the
same sizing data in less than a second, allowing the OT to focus on
other important aspects of patient care. Figure 8 shows two splints
generated using the same patient measurements. The left splint has
an increased weight on the restriction objective which resulted in
wider wings. The right splint decreased this weight and increased
the weight on comfort, causing the lower wing to narrow. Using
this optimizer, OTs could easily produce a variety of splints to test
out with patients.

Heuristic weights play a signifcant role in optimizer results
because they express the relationship between objectives and modi-
fers. To demonstrate this, we compared three splint heuristic maps
across 100 optimization trials using our evaluation tool. One heuris-
tic map used weights we inferred from our study notes. The second,
used weights by seeding our heuristic map tuning method with
the sample splints created by the OTs. The third weighted all ob-
jectives and modifers equally. Figure 9 shows how each of these
heuristic maps performed. A Welch’s Anova tests shows a signif-
icant (� = 439.79, � < 0.01) efect on the splints’ objective scores.
A Games Howell Post-hoc analysis shows a signifcant diference
(� < 0.01) between the expert and uniform (� = 29.3) and tuned
and uniform (� = 29.2) conditions, but not the expert and tuned
conditions (� = 0.9). This shows the value of expressing domain
expertise directly through heuristic maps or indirectly by seeding
our heuristic map tuning algorithm.

The splinting domain demonstrates the value domain experts
designing heuristics. While there may be a more efcient or efec-
tive optimization methods, we were able to build a splinting tool
that produces satisfcing results based on a description of the splint
design process. By structuring the optimization around heuristics,
we can embed the OT’s design process into a tool. This reduces
manual iterations across many appointments to an optimization
that consistently converges in under a second. The resulting design
is ready to print and provide to the patient. Further, OPTIMISM’s
multi-objective structure enables the OTs to quickly explore ob-
jective trade ofs either by browsing the Pareto set after a single
optimization or by adjusting weights and running the optimizer
multiple times.

8.3 Tactile Graphic Optimization
Beyond customizing objective functions, modifying heuristic strate-
gies can have signifcant benefts. In this demonstration we discuss

Figure 10: Sample optimized tactile maps optimized for 3D
printing and machine embroidery techniques.

prior work on Maptimizer [67], a tool built with OPTIMISM that
generates tactile maps that support blind navigation (Figure 10),
and a modifcation of its underlying optimizer to create a new tool
for optimizing machine embroidered tactile graphics [122]. Mapti-
mizer was developed by an interdisciplinary team of programmers
and accessibility experts. These tools give blind designers signif-
cant control over the optimization of tactile graphics so that they,
without the help of a programmer, can express what information
is most critical to them (objectives) and how to best represent that
information (modifers). Each designer will have diferent priorities
and preferences that they can express by changing objective and
heuristic weights. In this optimizer, objectives measure how much
high-value information is included in a graphic, how well specifc
pieces of information are conveyed, and how cluttered the graphic
is. For implementation details refer to [67].

In the prior study of Maptimizer [67], six blind designers pro-
vided objective and heuristic weights in a simple web form, a pre-
cursor to OPTIMISM’s automatically generated GUI. The resulting
maps generated with these weights produced maps that were opti-
mized for each individual participant and for four unique locations.
In a variety of navigation tasks, the optimized maps out performed
both manually customized maps and standardized maps. Without
being able to reconfgure objectives and heuristics, the resulting
maps could not adapt to each participant’s needs.

OPTIMISM’s fexibility enables domain experts and program-
mers to easily expand the scope of existing optimizers. Two un-
dergraduate researchers who were not involved in the creation
of Maptimizer (A8, A13), were able to create a new optimizer to
generate tactile graphics optimized for machine embroidery us-
ing Maptimizer’s optimizer code. They did this by programming
new objectives that ensured the graphics have continuity of em-
broidered texture across designer-specifed regions and contrast
between overlapping and neighboring regions. Additionally, they
modifed the original 3D printed tactile graphic representation to
generate SVG for machine embroidery. These simple additions sub-
stantially expanded the scope of the original tool to accommodate
a new manufacturing technique. Usually, modifying a generative
design tool to accommodate a new manufacturing technique with
unique constraints would require substantial efort but by factoring
objectives and modifers specifc to tactile graphics and 3D printing
into separate sections of the heuristic map, A8 and A13 had little
difculty extending the system.

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

Table 6: Tile-decor optimizer configurations. A-D vary design selector. D-G vary modifier selector. G was the best optimizer

Optimizer Design-Selector Modifier-Selector

A Select random design Select modifier with highest expected value
B Select highest scoring design Select modifier with highest expected value
C Select highest scoring design with 0.85 probability Select modifier with highest expected value
D Select highest scoring design with probability increasing with iterations Select modifier with highest expected value
E Select highest scoring design with probability increasing with iterations Select best-known modifier for objective function
F Select highest scoring design with probability increasing with iterations Select best-known modifier for lowest scoring objective

G Select highest scoring design with increasing probability Select best-known modifier for most important objective

Figure 11: Chen et al’s [32] original tile decor (left) and our
equivalent tile decor (right)

8.4 Replicating Tile-Decors
In this demonstration, we replicate Chen et al’s [32] heuristic based
optimization of “objects composed of connected tiles” and increase
its efficiency and efficacy with OPTIMISM. Like OPTIMISM’s ob-
jective functions, their objective function is a weighted scalariza-
tion of four objectives: minimize neighborhood distance, maximize
surface approximation, maximize hinge-placement, and minimize
repulsion. They apply four modifications: randomly placing tiles,
attracting tiles, repulsing tiles, and scaling tiles. We have replicated
this method without OPTIMISM and created seven OPTIMISM
optimizers that used different metaheuristics.

Table 7: Results of Games Howel Post-hoc analysis compar-
ing tile decor experiments. *Indicates significance (p<0.05).

A B C D E F G
A Score -0.2 4.8* -0.1 0.6 0.2 0.6
A Time 0.6 -3.02* 0.8 -0.4 -1.4 1.5
B Score -0.2 5.3* 0.1 0.8 0.4 0.8
B Time 0.6 -3.5* 0.2 -1.0 -2.0 1.0
C Score 4.8* 5.3* -5.6* -4.4* -4.8* -4.9*
C Time -3.02* -3.5* 3.6* 2.6 1.7 4.1*
D Score -0.1 0.1 -5.6* 0.8 0.4 0.7
D Time -0.4 -1.0 2.6 -1.1 -2.1 0.7
E Score 0.6 0.8 -4.4* 0.8 -0.4 -0.1
E Time -1.4 -2.0 1.7 -2.1 -0.9 1.8
F Score 0.2 0.4 -4.8* 0.4 -0.4 0.4
F Time -1.4 -2.0 1.7 -2.1 -0.9 2.7
G Score 0.6 0.8 -4.9* 0.7 -0.1 0.4
G Time 1.5 1.0 4.1* 0.7 1.8 -1.4

By plugging in different design and modifier selectors we were
able to test metaheuristic strategies without modifying the domain
specific code. Using our evaluation tool, we conducted seven ex-
periments (Table 6) where we generated a packed, cylindrical, tiled
surface (Figure 11) for 100 optimizations. We kept the stopping
condition constant, halting the optimization when a tile-decor was
discovered that achieve 95% of a perfect objective score or 10000 iter-
ations were exceeded. The first four experiments vary the modifier
selector (Table 6 A-D). A Welch’s Anova showed a significant effect
of varying the modifier selector (𝑝 < 0.01) on scores (𝐹 = 17.4)
and optimization time (𝐹 = 4.6). We then varied design selectors
(Table 6 D-G) and a Welch’s Anova showed no significant effect on
score (𝑝 > 0.1, 𝐹 = 0.3) but did find an significant effect on time

(a) Convergence time in seconds.

(b) Percentage of perfect scores.

Figure 12: Comparison of different metaheuristic configura-
tions by time and score. Experiment descriptions in Table 6

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

(� < 0.05, � = 3.1). A Games Howell post-hoc analysis the shows
diferences across experiments (Table 7, Figure 12). In comparison
to our replication of Chen et al’s original algorithm (Figure 13a,
13b), our optimizer converged on signifcantly (� < 0.01) higher
scores (� = 39.8) and converged signifcantly faster (� = −16.12)
based on a Welch’s T-test. Further, experimenting with diferent
metaheuristics gave us unique insights into the optimization prob-
lem. Unlike, Chen et al’s staged optimization method, our optimizer
switched between increasing diferent objectives with each iter-
ation. This revealed a trade-of between attraction and repulsion
objectives that is poorly supported by a multi-stage method.

(a) Convergence time in seconds.

(b) Percentage of perfect Score.

Figure 13: Box plots comparing OPTIMISM (O) vs replicated
(R) optimizers

8.5 Optimizing Knitted Textures
Our fnal demonstration examines an optimizer built with an early
version of OPTIMISM, KnitGIST [68], which uses the strategies of
hand knitters to generate complex, machine-knittable textures. Knit-
GIST exemplifes how OPTIMISM amplifes the expertise of the do-
main experts and programmers that build optimizers by making the
a highly-re-confgurable optimizer accessible to non-programming
designers. Since KnitGIST was implemented, OPTIMISM has been
expanded to include pluggable and parameterizable metaheuristics
(e.g., design selectors, modifer selectors, stopping criteria), a tun-
ing algorithm for defning heuristic maps, and an automatically
generated GUI for confguring optimizers. However, KnitGIST still
represents OPTIMISM’s core optimization structure in a complex
domain where designers need re-confgurable optimizers to gener-
ate functional and attractive designs.

Knitters design these patterns by considering the complex rela-
tionship between diferent stitches and their physical and aesthetic
properties (e.g., curl, elasticity, opacity, color). For example, knitters
will tediously switch the orientation of stitches to afect elasticity
and curl. Similarly, knitters change the color of stitches to create col-
ored images (Figure 14), a new addition to the KnitGIST heuristic li-
brary. However, the manual process of adjusting textures to achieve
these properties is often tedious and difcult. KnitGIST’s heuristic
library has the most programmatically complex objectives of our
demonstrations (e.g., estimations of physical properties, a decision

Figure 14: KnitGIST colorwork samples.

tree classifcation of texture aesthetics). However, like other demon-
strations, it uses simple modifers derived from common design
practice in the domain. KnitGIST amplifes knitters’ domain exper-
tise. Embedding knitters’ design strategies into KnitGIST through
heuristic maps enables designers to manage the complex stitch
structures without manual tweaking or programming.

9 DISCUSSION
OPTIMISM structure of metaheuristic optimizers gives domain ex-
perts a format to make their expertise explicit. Through the devel-
opment of our fve demonstrations and exemplar cookie optimizer
we have developed a better understanding of what domains are
best suited to OPTIMISM and the fexibility of this framework.

9.1 Suitable Optimization Domains
Our primary goal is to expand the role and agency of domain ex-
perts who help build optimizers. Through our demonstrations we
have focused on domain experts in under resourced domains such
as healthcare, accessibility, and craft communities because these ar-
eas are rarely the focus of optimization research. Even introducing
small efciencies in the design process can have out sized impacts
(e.g., increased time with patients). We observe that these designers
often rapidly prototype by making small modifcations to designs
and using rule-of-thumb objectives. Which modifcation comes
with each iteration is guided by intuition. When these strategies
are applied manually they are time consuming and designers are
limited to the number of iterations they can do in a limited amount
of time. Chefs tweak ingredient proportions [102]. Ophthalmolo-
gists examine diferent lens values. OTs trim splints [69]. Knitters
switch out stitches [68]. OPTIMISM has limited support for domain
experts in the development stage beyond the shared language of
design representations, objectives, and modifers and the GUI for
adjusting heuristics. There remains opportunities to defne design
representations, objectives, and modifers without programming.
While this may not be feasible across all domains, interfaces for
visually programming parameterized designs or graph structures
could build on OPTIMISM’s core optimization library. OPTIMISM

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

empowers domain experts to collaborate with programmers by
providing a shared language and by trading guarantees about opti-
mality or efciency for greater expressive match to design practice.
Heuristics make the relationships between modifers and objectives
explicit while replacing designer’s intuition with metaheuristics.

OPTIMISM may be amenable to domains where manual design
practices are insufcient (e.g., tile-decors, knitted textures); how-
ever, OPTIMISM’s utility is more limited. Without clear design
strategies, domain experts may need more technical expertise to
use OPTIMISM. While many domains may require more complex
solutions from programmers, our diverse set of demonstrations
show how simple heuristics still produce useful tools. In most cases,
objectives only compare or average a subset of design parameters
and corresponding modifers increment and decrement these pa-
rameters. These easy to program objectives and modifers may not
always be sufcient and programmers can provide more complex
functions. The simplicity of these library elements has secondary
advantages. First, they are easier for domain experts and designers
to understand and reason about. Second, by using many simpler
objectives and modifers, domain experts and designers can mix an
match more elements in the GUI rather than relying on the pro-
grammer. Third, these are efcient methods and can be executed
in many iterations without slowing the optimizer. OPTIMISM is
not appropriate for domains that require slower heuristics (e.g.,
simulation, user-interaction). In cases where optimality is critical,
OPTIMISM will not produce sufcient optimizers because meta-
heuristic methods cannot provide these guarantees. OPTIMISM is
meant to lower the foor and entry barriers to optimization. OP-
TIMISM is complementary to existing optimization toolkits for
convex [27], Bayesian [56], and multi-objective [23] optimization.

9.2 Flexibility of Optimizers
While heuristics have an expressive match to designer’s practices,
programmers often struggle to fnd an optimization method or
metaheuristic that matches a domain. Given the bumpiness and
lack of convexity of many domains, it is unclear which methods
will work best. The only option is to test many diferent meth-
ods and evaluate the difering results. Without the modularity of
OPTIMISM, building each unique optimizer to test diferent meta-
heuristics is a substantial burden for programmers. OPTIMISM
supports fexible prototyping of optimizers with re-confgurable
metaheuristics and heuristics. Using simple evaluation tools that
run many iterations of these optimizers with randomized objec-
tive weights, the programmer can evaluate the efects of diferent
heuristics and metaheuristics on objective scores and convergence
times. We demonstrated this in the construction and evaluation of
splint and tile-decor optimizers.

As a programming toolkit, OPTIMISM is a jumping of point to
build more advanced optimization methods. By structuring objec-
tives as weighted set, we provide a common structure for multi-
objective optimization problems. Recall, that decomposition meth-
ods for exploring of the Pareto front (e.g., all-weighted sums method)
require optimizers that search for solutions to specifc scalarizations
of the multi-objective problem. As we showed with our Cookie op-
timizer, OPTIMISM has all of the components needed to implement
these types of methods. The design population at the core of an

optimizer and that is returned to the designer collects critical in-
formation from disparate design representations into a common
format. With the the design population, programmers could build
multi-objective optimization methods that make decisions based
on objective scores, history of improvement, and Pareto dominance.
Programmers could build these more advanced optimizers using
the same heuristic structures they designed with domain-experts.
The optimizers OPTIMISM currently produces are, alone, useful
tools in new domains, however methods that produce many Pareto
optimal results rather than results sorted by a weighted objective
function will require advances in interactive decision making (e.g.,
[126]) and visualizations of the objective space (e.g.,[78]).

10 LIMITATIONS
We have evaluated OPTIMISM though independent case studies
with varying degrees of involvement from programmers, domain
experts, and programmers and at diferent stages in the implementa-
tion of OPTIMISM. The time needed to implement optimizers varied
depending on the iteration of the toolkit. Indeed, limitations dis-
covered in prior work [67, 68] directly infuenced key features. For
example, blind designers who used Maptimizer provided critical
feedback that infuenced the design of the automatically gener-
ated GUIs. Ultimately, the last demonstration to be implemented,
cataract lenses, was built in two weeks by a team that had no prior
experience with OPTIMISM. The programmer, Brian, benefted
substantially from optimizer patterns he observed in existing opti-
mizers and was able to adapt them to a novel domain without our
support. Without further, longitudinal, case studies we are limited
in our analysis of OPTIMISM’s learn-ability by diferent users or its
expressive match to novel domains. Many of our demonstrations
are motivated by prior work on clinical CAD tools [69] that are used
by clinicians and people with disabilities. In these domains, it is es-
sential that extensive, iterative design practices be reduced to quick
(e.g., under a minute) calculations and return only a few efective
results. In prior work with people with disabilities and clinicians,
its clear that that they would prefer one satisfactory result over
the opportunity to—and burden of—evaluating many discovered
designs with trade-ofs (e.g., the Pareto front) [65, 69]. However,
this is not representative of all domains that OPTIMISM could be
applied to and future research should expand to diferent domain
experts and programmers with varied expertise in optimization.

11 CONCLUSION
We contribute a toolkit for building generative design tools in
unique domains. OPTIMISM is designed to: empower domain ex-
perts in the collaborative process of building domain specifc opti-
mizers, support fexible rapid prototyping of optimizers, and pro-
duce satisfying and sufcient designs. Unlike other optimization
toolkits, OPTIMISM separates the roles of programmers who im-
plement optimizers and domain experts who guide optimizers to
good results. They do this collaboratively by building a library
of heuristics that are applied by fexible metaheuristics that can
accommodate a wide variety of domains.

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

ACKNOWLEDGMENTS
We thank the participants and collaborators who have used OPTI-
MISM to build the systems we have described. This work was funded
by: Google; the Center for Research and Education on Accessible
Technology and Experiences (CREATE); a NIDILRR ARRT Train-
ing grant 90ARCP0005-01-00; and the National Science Foundation
(IIS-1907337, IIS-1718651, 2031801, CHS-1907337, FMitF-1836813).

REFERENCES
[1] 2020. TensorFlow Model Optimization. https://www.tensorfow.org/model_

optimization [Online; accessed 1. Apr. 2021].
[2] 2021. ACM Trans. Graph. Vol. 40. Association for Computing Machinery, New

York, NY, USA.
[3] 2021. CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems (Yokohama, Japan). Association for Computing Machinery,
New York, NY, USA.

[4] 2021. Maple Global Optimization Toolbox Powered by Optimus - Optimiza-
tion Software - Maplesoft. https://www.maplesoft.com/products/toolboxes/
globaloptimization [Online; accessed 1. Apr. 2021].

[5] 2021. Opt4J. https://sdarg.github.io/opt4j [Online; accessed 1. Apr. 2021].
[6] 2021. Optimization Algorithm Toolkit (OAT). https://www.onworks.net/

software/app-optimization-algorithm-toolkit-oat [Online; accessed 1. Apr.
2021].

[7] 2021. Optimization Toolbox. https://www.mathworks.com/products/
optimization.html [Online; accessed 1. Apr. 2021].

[8] 2021. SCF ’21: Symposium on Computational Fabrication (Virtual Event, USA).
Association for Computing Machinery, New York, NY, USA.

[9] 2021. UIST ’21: The 34th Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA). Association for Computing Machinery, New
York, NY, USA.

[10] 2022. A Comparison of Cooling Schedules for Simulated Annealing (Artifcial
Intelligence). http://what-when-how.com/artifcial-intelligence/a-comparison-
of-cooling-schedules-for-simulated-annealing-artifcial-intelligence [Online;
accessed 8. Feb. 2022].

[11] Muhammad Abdullah, Martin Taraz, Yannis Kommana, Shohei Katakura, Robert
Kovacs, Jotaro Shigeyama, Thijs Roumen, and Patrick Baudisch. 2021. FastForce:
Real-Time Reinforcement of Laser-Cut Structures. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445466

[12] Muhammad Abdullah, Martin Taraz, Yannis Kommana, Shohei Katakura, Robert
Kovacs, Jotaro Shigeyama, Thijs Roumen, and Patrick Baudisch. 2021. FastForce:
Real-Time Reinforcement of Laser-Cut Structures. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 673,
12 pages. https://doi.org/10.1145/3411764.3445466

[13] Maneesh Agrawala and Chris Stolte. 2001. Rendering Efective Route Maps:
Improving Usability through Generalization. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01).
Association for Computing Machinery, New York, NY, USA, 241–249. https:
//doi.org/10.1145/383259.383286

[14] Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, Caitlin Mueller,
Wojciech Matusik, Ariel Shamir, Karan Singh, and David I. W. Levin. 2019.
Volumetric Michell Trusses for Parametric Design & Fabrication. In Proceedings
of the ACM Symposium on Computational Fabrication (Pittsburgh, Pennsylvania)
(SCF ’19). Association for Computing Machinery, New York, NY, USA, Article 6,
13 pages. https://doi.org/10.1145/3328939.3328999

[15] C. Audet and W. Hare. 2017. Derivative-Free and Blackbox Optimization. Springer
International Publishing. https://books.google.com/books?id=ejVBDwAAQBAJ

[16] Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational
Design of Nanostructural Color for Additive Manufacturing. ACM Trans. Graph.
37, 4, Article 159 (jul 2018), 16 pages. https://doi.org/10.1145/3197517.3201376

[17] Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and
Wojciech Matusik. 2017. Color Contoning for 3D Printing. ACM Trans. Graph.
36, 4, Article 124 (jul 2017), 15 pages. https://doi.org/10.1145/3072959.3073605

[18] Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfster. 2012. Fabri-
cating Articulated Characters from Skinned Meshes. ACM Trans. Graph. 31, 4,
Article 47 (July 2012), 9 pages. https://doi.org/10.1145/2185520.2185543

[19] Moritz Bächer, Benjamin Hepp, Fabrizio Pece, Paul G. Kry, Bernd Bickel, Bern-
hard Thomaszewski, and Otmar Hilliges. 2016. DefSense: Computational Design
of Customized Deformable Input Devices. In Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 3806–3816.
https://doi.org/10.1145/2858036.2858354

[20] Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014.
Spin-It: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph.

33, 4, Article 96 (July 2014), 10 pages. https://doi.org/10.1145/2601097.2601157
[21] Shajay Bhooshan, Tom Van Mele, and Philippe Block. 2020. Morph & Slerp:

Shape Description for 3D Printing of Concrete. In Symposium on Computational
Fabrication (Virtual Event, USA) (SCF ’20). Association for Computing Machin-
ery, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/3424630.
3425413

[22] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter
Pfster, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of
Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article
63 (July 2010), 10 pages. https://doi.org/10.1145/1778765.1778800

[23] Julian Blank and Kalyanmoy Deb. 2020. Pymoo: Multi-Objective Optimization
in Python. IEEE Access 8 (2020), 89497–89509. https://doi.org/10.1109/ACCESS.
2020.2990567

[24] Christian Blum and Andrea Roli. 2003. Metaheuristics in Combinatorial Op-
timization: Overview and Conceptual Comparison. ACM Comput. Surv. 35, 3
(2003), 268–308. https://doi.org/10.1145/937503.937505

[25] Alton Brown. 2020. The Pufy Chocolate Chip Cookie. https://altonbrown.
com/recipes/the-pufy [Online; accessed 6. Apr. 2021].

[26] Reva Brown. 2004. Consideration of the origin of Herbert Simon’s theory of
“satisfcing” (1933-1947). Management Decision 42, 10 (Dec. 2004), 1240–1256.
https://doi.org/10.1108/00251740410568944

[27] Edward Burnell, Nicole B. Damen, and Warren Hoburg. 2020. GPkit: A Human-
Centered Approach to Convex Optimization in Engineering Design. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376412

[28] Massimiliano Caramia and Paolo Dell’Olmo. 2020. Multi-objective Optimization.
In Multi-objective Management in Freight Logistics: Increasing Capacity, Service
Level, Sustainability, and Safety with Optimization Algorithms. Springer, Cham,
Switzerland, 21–51. https://doi.org/10.1007/978-3-030-50812-8_2

[29] Ruei-Che Chang, Chih-An Tsao, Fang-Ying Liao, Seraphina Yong, Tom Yeh,
and Bing-Yu Chen. 2021. Daedalus in the Dark: Designing for Non-Visual
Accessible Construction of Laser-Cut Architecture. In The 34th Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 344–358.
https://doi.org/10.1145/3472749.3474754

[30] Ruei-Che Chang, Chih-An Tsao, Fang-Ying Liao, Seraphina Yong, Tom Yeh,
and Bing-Yu Chen. 2021. Daedalus in the Dark: Designing for Non-Visual
Accessible Construction of Laser-Cut Architecture. In The 34th Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 344–358.
https://doi.org/10.1145/3472749.3474754

[31] Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017.
Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans.
Graph. 36, 4, Article 84 (jul 2017), 15 pages. https://doi.org/10.1145/3072959.
3073669

[32] Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and
wenping wang. 2017. Fabricable Tile Decors. ACM Trans. Graph. 36, 6, Article
175 (Nov. 2017), 15 pages. https://doi.org/10.1145/3130800.3130817

[33] Xiang ’Anthony’ Chen, Stelian Coros, and Scott E. Hudson. 2018. Medley: A
Library of Embeddables to Explore Rich Material Properties for 3D Printed
Objects. In Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173736

[34] Xiang ’Anthony’ Chen, Stelian Coros, Jennifer Mankof, and Scott E. Hudson.
2015. Encore: 3D Printed Augmentation of Everyday Objects with Printed-
Over, Afxed and Interlocked Attachments. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA)
(UIST ’15). Association for Computing Machinery, New York, NY, USA, 73–82.
https://doi.org/10.1145/2807442.2807498

[35] Xiang ’Anthony’ Chen, Ye Tao, Guanyun Wang, Runchang Kang, Tovi Grossman,
Stelian Coros, and Scott E. Hudson. 2018. Forte: User-Driven Generative Design.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174070

[36] Subramanian Chidambaram, Yunbo Zhang, Venkatraghavan Sundararajan,
Niklas Elmqvist, and Karthik Ramani. 2019. Shape Structuralizer: Design, Fabri-
cation, and User-Driven Iterative Refnement of 3D Mesh Models. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3290605.3300893

[37] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. 2007.
Evolutionary Algorithms for Solving Multi-Objective Problems. Springer US.
https://link.springer.com/book/10.1007/978-0-387-36797-2

[38] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira
Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Compu-
tational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2461953

https://www.tensorflow.org/model_optimization
https://www.tensorflow.org/model_optimization
https://www.maplesoft.com/products/toolboxes/globaloptimization
https://www.maplesoft.com/products/toolboxes/globaloptimization
https://sdarg.github.io/opt4j
https://www.onworks.net/software/app-optimization-algorithm-toolkit-oat
https://www.onworks.net/software/app-optimization-algorithm-toolkit-oat
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence
https://doi.org/10.1145/3411764.3445466
https://doi.org/10.1145/3411764.3445466
https://doi.org/10.1145/383259.383286
https://doi.org/10.1145/383259.383286
https://doi.org/10.1145/3328939.3328999
https://books.google.com/books?id=ejVBDwAAQBAJ
https://doi.org/10.1145/3197517.3201376
https://doi.org/10.1145/3072959.3073605
https://doi.org/10.1145/2185520.2185543
https://doi.org/10.1145/2858036.2858354
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1145/3424630.3425413
https://doi.org/10.1145/3424630.3425413
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1145/937503.937505
https://altonbrown.com/recipes/the-puffy
https://altonbrown.com/recipes/the-puffy
https://doi.org/10.1108/00251740410568944
https://doi.org/10.1145/3313831.3376412
https://doi.org/10.1007/978-3-030-50812-8_2
https://doi.org/10.1145/3472749.3474754
https://doi.org/10.1145/3472749.3474754
https://doi.org/10.1145/3072959.3073669
https://doi.org/10.1145/3072959.3073669
https://doi.org/10.1145/3130800.3130817
https://doi.org/10.1145/3173574.3173736
https://doi.org/10.1145/2807442.2807498
https://doi.org/10.1145/3173574.3174070
https://doi.org/10.1145/3290605.3300893
https://link.springer.com/book/10.1007/978-0-387-36797-2
https://doi.org/10.1145/2461912.2461953

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

[39] Sebastian Cucerca, Piotr Didyk, Hans-Peter Seidel, and Vahid Babaei. 2020.
Computational Image Marking on Metals via Laser Induced Heating. ACM
Trans. Graph. 39, 4, Article 70 (jul 2020), 12 pages. https://doi.org/10.1145/
3386569.3392423

[40] Sebastian Cucerca, Piotr Didyk, Hans-Peter Seidel, and Vahid Babaei. 2020.
Computational Image Marking on Metals via Laser Induced Heating. ACM
Trans. Graph. 39, 4, Article 70 (jul 2020), 12 pages. https://doi.org/10.1145/
3386569.3392423

[41] Niraj Ramesh Dayama, Kashyap Todi, Taru Saarelainen, and Antti Oulasvirta.
2020. GRIDS: Interactive Layout Design with Integer Programming. Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3313831.3376553

[42] Kalyanmoy Deb and Kalyanmoy Deb. 2014. Multi-objective Optimization.
Springer US, Boston, MA, 403–449. https://doi.org/10.1007/978-1-4614-6940-
7_15

[43] Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-Aware Design
of Printable Electromechanical Devices. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST
’18). Association for Computing Machinery, New York, NY, USA, 457–472. https:
//doi.org/10.1145/3242587.3242655

[44] Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-Aware Design
of Printable Electromechanical Devices. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST
’18). Association for Computing Machinery, New York, NY, USA, 457–472. https:
//doi.org/10.1145/3242587.3242655

[45] Nikan Doosti, Julian Panetta, and Vahid Babaei. 2021. Topology Optimization
via Frequency Tuning of Neural Design Representations. In Symposium on Com-
putational Fabrication (Virtual Event, USA) (SCF ’21). Association for Computing
Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/10.1145/
3485114.3485124

[46] M. Dorigo, M. Birattari, and T. Stutzle. 2006. Ant colony optimization. IEEE
Computational Intelligence Magazine 1, 4 (2006), 28–39. https://doi.org/10.1109/
MCI.2006.329691

[47] Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016.
Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (nov
2016), 10 pages. https://doi.org/10.1145/2980179.2982427

[48] Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016.
Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (nov
2016), 10 pages. https://doi.org/10.1145/2980179.2982427

[49] Peitong Duan, Casimir Wierzynski, and Lama Nachman. 2020. Optimizing User
Interface Layouts via Gradient Descent. Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376589

[50] John J. Dudley, Jason T. Jacques, and Per Ola Kristensson. 2019. Crowdsourcing
Interface Feature Design with Bayesian Optimization. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300482

[51] Jérémie Dumas, Jean Hergel, and Sylvain Lefebvre. 2014. Bridging the Gap:
Automated Steady Scafoldings for 3D Printing. ACM Trans. Graph. 33, 4, Article
98 (July 2014), 10 pages. https://doi.org/10.1145/2601097.2601153

[52] Michael T. M. Emmerich and André H. Deutz. 2018. A tutorial on multiobjective
optimization: fundamentals and evolutionary methods. Nat. Comput. 17, 3 (Sep
2018), 585–609. https://doi.org/10.1007/s11047-018-9685-y

[53] Paulo Paneque Galuzio, Emerson Hochsteiner de Vasconcelos Segundo, Leandro
dos Santos Coelho, and Viviana Cocco Mariani. 2020. MOBOpt — multi-objective
Bayesian optimization. SoftwareX 12 (2020), 100520. https://doi.org/10.1016/j.
softx.2020.100520

[54] Christoph Gebhardt and Otmar Hilliges. 2021. Optimization-Based User Support
for Cinematographic Quadrotor Camera Target Framing. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
586, 13 pages. https://doi.org/10.1145/3411764.3445568

[55] Fred Glover and Manuel Laguna. 1998. Tabu Search. Springer US, Boston, MA,
2093–2229. https://doi.org/10.1007/978-1-4613-0303-9_33

[56] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association for
Computing Machinery, New York, NY, USA, 1487–1495. https://doi.org/10.
1145/3097983.3098043

[57] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark Pauly. 2008.
Automatic Generation of Tourist Maps. ACM Trans. Graph. 27, 3 (Aug. 2008),
1–11. https://doi.org/10.1145/1360612.1360699

[58] Jianzhe Gu, Vidya Narayanan, Guanyun Wang, Danli Luo, Harshika Jain, Kexin
Lu, Fang Qin, Sijia Wang, James McCann, and Lining Yao. 2020. Inverse Design
Tool for Asymmetrical Self-Rising Surfaces with Color Texture. In Symposium
on Computational Fabrication (Virtual Event, USA) (SCF ’20). Association for
Computing Machinery, New York, NY, USA, Article 14, 12 pages. https://doi.

org/10.1145/3424630.3425420
[59] Yacov Haimes. 1971. On a bicriterion formulation of the problems of integrated

system identifcation and system optimization. IEEE transactions on systems,
man, and cybernetics 1, 3 (1971), 296–297.

[60] Yue Hao, Yun-hyeong Kim, and Jyh-Ming Lien. 2018. Synthesis of Fast and
Collision-Free Folding of Polyhedral Nets. In Proceedings of the 2nd ACM Sym-
posium on Computational Fabrication (Cambridge, Massachusetts) (SCF ’18).
Association for Computing Machinery, New York, NY, USA, Article 2, 10 pages.
https://doi.org/10.1145/3213512.3213517

[61] Yue Hao and Jyh-Ming Lien. 2019. Computational Laser Forming Origami
of Convex Surfaces. In Proceedings of the ACM Symposium on Computational
Fabrication (Pittsburgh, Pennsylvania) (SCF ’19). Association for Computing
Machinery, New York, NY, USA, Article 9, 11 pages. https://doi.org/10.1145/
3328939.3329006

[62] Jean Hergel, Kevin Hinz, Sylvain Lefebvre, and Bernhard Thomaszewski. 2019.
Extrusion-Based Ceramics Printing with Strictly-Continuous Deposition. ACM
Trans. Graph. 38, 6, Article 194 (nov 2019), 11 pages. https://doi.org/10.1145/
3355089.3356509

[63] Kenneth J. Hofer. 1993. The Hofer Q formula: A comparison of theoretic
and regression formulas. Journal of Cataract & Refractive Surgery 19, 6 (1993),
700–712. https://doi.org/10.1016/S0886-3350(13)80338-0

[64] Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E.
Hudson, James McCann, and Jennifer Mankof. 2019. KnitPicking Textures:
Programming and Modifying Complex Knitted Textures for Machine and Hand
Knitting. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 5–16. https://doi.org/10.1145/
3332165.3347886

[65] Megan Hofmann, Jefrey Harris, Scott E. Hudson, and Jennifer Mankof. 2016.
Helping Hands: Requirements for a Prototyping Methodology for Upper-Limb
Prosthetics Users. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 1769–1780. https://doi.org/10.
1145/2858036.2858340

[66] Megan Hofmann, Udaya Lakshmi, Kelly Mack, Rosa I. Arriaga, Scott E. Hudson,
and Jennifer Mankof. 2022. Making a Medical Maker’s Playbook: An Ethno-
graphic Study of Safety-Critical Collective Design by Makers in Response to
COVID-19. Proc. ACM Hum.-Comput. Interact. 6, CSCW1, Article 101 (apr 2022),
26 pages. https://doi.org/10.1145/3512948

[67] Megan Hofmann, Kelly Mack, Jessica Birchfeld, Jerry Cao, Autumn Hughes,
Shriya Kurpad, Kathryn J Lum, Emily Warnock, Anat Caspi, Scott E. Hudson, and
Jennifer Mankof. 2022. Maptimizer: Using Optimization to Tailor Tactile Maps
to Users Needs. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (New Orleans LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3491102.3517436

[68] Megan Hofmann, Jennifer Mankof, and Scott E. Hudson. 2020. KnitGIST: A
Programming Synthesis Toolkit for Generating Functional Machine-Knitting
Textures. In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology (Virtual Event, USA) (UIST ’20). Association for Com-
puting Machinery, New York, NY, USA, 1234–1247. https://doi.org/10.1145/
3379337.3415590

[69] Megan Hofmann, Kristin Williams, Toni Kaplan, Stephanie Valencia, Gabriella
Hann, Scott E. Hudson, Jennifer Mankof, and Patrick Carrington. 2019. “Occu-
pational Therapy is Making”: Clinical Rapid Prototyping and Digital Fabrication.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300544

[70] Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick
Baudisch. 2019. Understanding Metamaterial Mechanisms. Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3290605.3300877

[71] Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick
Baudisch. 2019. Understanding Metamaterial Mechanisms. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300877

[72] Caigui Jiang, Chengcheng Tang, Hans-Peter Seidel, and Peter Wonka. 2017.
Design and Volume Optimization of Space Structures. ACM Trans. Graph. 36, 4,
Article 159 (July 2017), 14 pages. https://doi.org/10.1145/3072959.3073619

[73] Yue Jiang, Wolfgang Stuerzlinger, Matthias Zwicker, and Christof Lutteroth.
2020. ORCSolver: An Efcient Solver for Adaptive GUI Layout with OR-Constraints.
Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.
org/10.1145/3313831.3376610

[74] Yuhua Jin, Isabel Qamar, Michael Wessely, and Stefanie Mueller. 2020. Photo-
Chromeleon: Re-Programmable Multi-Color Textures Using Photochromic Dyes.
In ACM SIGGRAPH 2020 Emerging Technologies (Virtual Event, USA) (SIGGRAPH
’20). Association for Computing Machinery, New York, NY, USA, Article 7,
2 pages. https://doi.org/10.1145/3388534.3407296

https://doi.org/10.1145/3386569.3392423
https://doi.org/10.1145/3386569.3392423
https://doi.org/10.1145/3386569.3392423
https://doi.org/10.1145/3386569.3392423
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3485114.3485124
https://doi.org/10.1145/3485114.3485124
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1145/2980179.2982427
https://doi.org/10.1145/2980179.2982427
https://doi.org/10.1145/3313831.3376589
https://doi.org/10.1145/3290605.3300482
https://doi.org/10.1145/2601097.2601153
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1016/j.softx.2020.100520
https://doi.org/10.1016/j.softx.2020.100520
https://doi.org/10.1145/3411764.3445568
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/1360612.1360699
https://doi.org/10.1145/3424630.3425420
https://doi.org/10.1145/3424630.3425420
https://doi.org/10.1145/3213512.3213517
https://doi.org/10.1145/3328939.3329006
https://doi.org/10.1145/3328939.3329006
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1016/S0886-3350(13)80338-0
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/2858036.2858340
https://doi.org/10.1145/2858036.2858340
https://doi.org/10.1145/3512948
https://doi.org/10.1145/3491102.3517436
https://doi.org/10.1145/3379337.3415590
https://doi.org/10.1145/3379337.3415590
https://doi.org/10.1145/3290605.3300544
https://doi.org/10.1145/3290605.3300877
https://doi.org/10.1145/3290605.3300877
https://doi.org/10.1145/3290605.3300877
https://doi.org/10.1145/3072959.3073619
https://doi.org/10.1145/3313831.3376610
https://doi.org/10.1145/3313831.3376610
https://doi.org/10.1145/3388534.3407296

OPTIMISM CHI ’23, April 23–28, 2023, Hamburg, Germany

[75] Florian Kadner, Yannik Keller, and Constantin Rothkopf. 2021. AdaptiFont:
Increasing Individuals’ Reading Speed with a Generative Font Model and
Bayesian Optimization. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, Article 585, 11 pages. https:
//doi.org/10.1145/3411764.3445140

[76] Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String Actuated Curved
Folded Surfaces. ACM Trans. Graph. 36, 4, Article 64a (may 2017), 13 pages.
https://doi.org/10.1145/3072959.3015460

[77] Mina Konaković, Keenan Crane, Bailin Deng, Sofen Bouaziz, Daniel Piker, and
Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication
with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (jul 2016), 11 pages.
https://doi.org/10.1145/2897824.2925944

[78] Roozbeh Haghnazar Koochaksaraei, Ivan Reinaldo Meneghini, Vitor Nazário
Coelho, and Frederico Gadelha Guimarães. 2017. A new visualization method
in many-objective optimization with chord diagram and angular mapping.
Knowledge-Based Systems 138 (2017), 134–154. https://doi.org/10.1016/j.knosys.
2017.09.035

[79] Yuki Koyama and Masataka Goto. 2018. OptiMo: Optimization-Guided Motion
Editing for Keyframe Character Animation. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3173574.3173735

[80] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential
Line Search for Efcient Visual Design Optimization by Crowds. ACM Trans.
Graph. 36, 4, Article 48 (jul 2017), 11 pages. https://doi.org/10.1145/3072959.
3073598

[81] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential
Line Search for Efcient Visual Design Optimization by Crowds. ACM Trans.
Graph. 36, 4, Article 48 (jul 2017), 11 pages. https://doi.org/10.1145/3072959.
3073598

[82] Sivam Krish. 2011. A practical generative design method. Computer-Aided
Design 43, 1 (2011), 88–100. https://doi.org/10.1016/j.cad.2010.09.009

[83] Udaya Lakshmi, Megan Hofmann, Stephanie Valencia, Lauren Wilcox, Jennifer
Mankof, and Rosa I. Arriaga. 2019. "Point-of-Care Manufacturing": Maker
Perspectives on Digital Fabrication in Medical Practice. Proc. ACM Hum.-Comput.
Interact. 3, CSCW, Article 91 (nov 2019), 23 pages. https://doi.org/10.1145/
3359193

[84] Thomas Langerak, Juan José Zárate, Velko Vechev, David Lindlbauer, Daniele
Panozzo, and Otmar Hilliges. 2020. Optimal Control for Electromagnetic Haptic
Guidance Systems. Association for Computing Machinery, New York, NY, USA,
951–965. https://doi.org/10.1145/3379337.3415593

[85] DoYoung Lee, Jiwan Kim, and Ian Oakley. 2021. FingerText: Exploring and
Optimizing Performance for Wearable, Mobile and One-Handed Typing. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 283, 15 pages. https://doi.org/10.1145/3411764.3445106

[86] Danny Leen, Tom Veuskens, Kris Luyten, and Raf Ramakers. 2019. JigFab: Com-
putational Fabrication of Constraints to Facilitate Woodworking with Power
Tools. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300386

[87] Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016.
Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM
Trans. Graph. 35, 4, Article 88 (jul 2016), 12 pages. https://doi.org/10.1145/
2897824.2925960

[88] Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016.
Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM
Trans. Graph. 35, 4, Article 88 (jul 2016), 12 pages. https://doi.org/10.1145/
2897824.2925960

[89] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-Aware
Online Adaptation of Mixed Reality Interfaces. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (New Orleans, LA,
USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
147–160. https://doi.org/10.1145/3332165.3347945

[90] Qi Liu, Xiaofeng Li, Haitao Liu, and Zhaoxia Guo. 2020. Multi-objective meta-
heuristics for discrete optimization problems: A review of the state-of-the-art.
Applied Soft Computing 93 (2020), 106382. https://doi.org/10.1016/j.asoc.2020.
106382

[91] J. Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal Patel, Sharan Shodhan,
Kishan Patel, Ken Koedinger, and Emma Brunskill. 2016. Interface Design
Optimization as a Multi-Armed Bandit Problem. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (San Jose, California, USA)
(CHI ’16). Association for Computing Machinery, New York, NY, USA, 4142–4153.
https://doi.org/10.1145/2858036.2858425

[92] Alexander V. Lotov and Kaisa Miettinen. 2008. Visualizing the Pareto Frontier.
In Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer,
Berlin, Germany, 213–243. https://doi.org/10.1007/978-3-540-88908-3_9

[93] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. 2003. Iterated Local
Search. In Handbook of Metaheuristics. Springer, Boston, MA, Boston, MA, USA,
320–353. https://doi.org/10.1007/0-306-48056-5_11

[94] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann
Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-Last:
Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97
(July 2014), 10 pages. https://doi.org/10.1145/2601097.2601168

[95] Granit Luzhnica and Eduardo Veas. 2019. Optimising Encoding for Vibrotactile
Skin Reading. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300465

[96] Jennifer Mankof, Megan Hofmann, Xiang ’Anthony’ Chen, Scott E. Hudson,
Amy Hurst, and Jeeeun Kim. 2019. Consumer-Grade Fabrication and Its Potential
to Revolutionize Accessibility. Commun. ACM 62, 10 (sep 2019), 64–75. https:
//doi.org/10.1145/3339824

[97] R. Timothy Marler and Jasbir S. Arora. 2010. The weighted sum method for
multi-objective optimization: new insights. Struct. Multidiscip. Optim. 41, 6 (June
2010), 853–862. https://doi.org/10.1007/s00158-009-0460-7

[98] Jess McIntosh, Hubert Dariusz Zajac, Andreea Nicoleta Stefan, Joanna
Bergström, and Kasper Hornbæk. 2020. Iteratively Adapting Avatars Using
Task-Integrated Optimisation. Association for Computing Machinery, New York,
NY, USA, 709–721. https://doi.org/10.1145/3379337.3415832

[99] Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges,
Markus Gross, and Stelian Coros. 2015. Interactive Design of 3D-Printable
Robotic Creatures. ACM Trans. Graph. 34, 6, Article 216 (Oct. 2015), 9 pages.
https://doi.org/10.1145/2816795.2818137

[100] Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross,
and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant
Mechanisms. ACM Trans. Graph. 36, 4, Article 82 (jul 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073636

[101] Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross,
and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant
Mechanisms. ACM Trans. Graph. 36, 4, Article 82 (jul 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073636

[102] Michael Menninger. 2014. Three Chips for Sister marsha Transcript. http:
//www.goodeatsfanpage.com/season3/cookie/cookietranscript.htm

[103] K. Miettinen. 2012. Nonlinear Multiobjective Optimization. Springer US. https:
//books.google.com/books?id=bnzjBwAAQBAJ

[104] Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design
of Stable Planar-Rod Structures. ACM Trans. Graph. 35, 4, Article 86 (jul 2016),
11 pages. https://doi.org/10.1145/2897824.2925978

[105] Roberto A. Montano Murillo, Sriram Subramanian, and Diego Martinez Plasen-
cia. 2017. Erg-O: Ergonomic Optimization of Immersive Virtual Environments.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 759–771. https://doi.org/10.1145/3126594.3126605

[106] Rafael Morales, Asier Marzo, Sriram Subramanian, and Diego Martínez. 2019.
LeviProps: Animating Levitated Optimized Fabric Structures Using Holographic
Acoustic Tweezers. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association
for Computing Machinery, New York, NY, USA, 651–661. https://doi.org/10.
1145/3332165.3347882

[107] Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael
Wimmer, and Leif Kobbelt. 2016. Non-Linear Shape Optimization Using Local
Subspace Projections. ACM Trans. Graph. 35, 4, Article 87 (jul 2016), 13 pages.
https://doi.org/10.1145/2897824.2925886

[108] Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav
Křivánek. 2021. A Gradient-Based Framework for 3D Print Appearance Op-
timization. ACM Trans. Graph. 40, 4, Article 178 (jul 2021), 15 pages. https:
//doi.org/10.1145/3450626.3459844

[109] Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav
Křivánek. 2021. A Gradient-Based Framework for 3D Print Appearance Op-
timization. ACM Trans. Graph. 40, 4, Article 178 (jul 2021), 15 pages. https:
//doi.org/10.1145/3450626.3459844

[110] Masa Ogata and Yuki Koyama. 2021. A Computational Approach to Magnetic
Force Feedback Design. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, Article 284, 12 pages. https:
//doi.org/10.1145/3411764.3445631

[111] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[112] Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and
Mark Pauly. 2021. Computational Inverse Design of Surface-Based Infatables.
ACM Trans. Graph. 40, 4, Article 40 (jul 2021), 14 pages. https://doi.org/10.1145/
3450626.3459789

https://doi.org/10.1145/3411764.3445140
https://doi.org/10.1145/3411764.3445140
https://doi.org/10.1145/3072959.3015460
https://doi.org/10.1145/2897824.2925944
https://doi.org/10.1016/j.knosys.2017.09.035
https://doi.org/10.1016/j.knosys.2017.09.035
https://doi.org/10.1145/3173574.3173735
https://doi.org/10.1145/3072959.3073598
https://doi.org/10.1145/3072959.3073598
https://doi.org/10.1145/3072959.3073598
https://doi.org/10.1145/3072959.3073598
https://doi.org/10.1016/j.cad.2010.09.009
https://doi.org/10.1145/3359193
https://doi.org/10.1145/3359193
https://doi.org/10.1145/3379337.3415593
https://doi.org/10.1145/3411764.3445106
https://doi.org/10.1145/3290605.3300386
https://doi.org/10.1145/2897824.2925960
https://doi.org/10.1145/2897824.2925960
https://doi.org/10.1145/2897824.2925960
https://doi.org/10.1145/2897824.2925960
https://doi.org/10.1145/3332165.3347945
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1145/2858036.2858425
https://doi.org/10.1007/978-3-540-88908-3_9
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/3290605.3300465
https://doi.org/10.1145/3339824
https://doi.org/10.1145/3339824
https://doi.org/10.1007/s00158-009-0460-7
https://doi.org/10.1145/3379337.3415832
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3072959.3073636
http://www.goodeatsfanpage.com/season3/cookie/cookietranscript.htm
http://www.goodeatsfanpage.com/season3/cookie/cookietranscript.htm
https://books.google.com/books?id=bnzjBwAAQBAJ
https://books.google.com/books?id=bnzjBwAAQBAJ
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1145/3126594.3126605
https://doi.org/10.1145/3332165.3347882
https://doi.org/10.1145/3332165.3347882
https://doi.org/10.1145/2897824.2925886
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3450626.3459844
https://doi.org/10.1145/3411764.3445631
https://doi.org/10.1145/3411764.3445631
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/3450626.3459789
https://doi.org/10.1145/3450626.3459789

CHI ’23, April 23–28, 2023, Hamburg, Germany Hofmann et. al.,

[113] Seonwook Park, Christoph Gebhardt, Roman Rädle, Anna Maria Feit, Hana
Vrzakova, Niraj Ramesh Dayama, Hui-Shyong Yeo, Clemens N. Klokmose, Aaron
Quigley, Antti Oulasvirta, and Otmar Hilliges. 2018. AdaM: Adapting Multi-User
Interfaces for Collaborative Environments in Real-Time. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–14. https://doi.org/10.1145/3173574.3173758

[114] Davide Pellis, Martin Kilian, Helmut Pottmann, and Mark Pauly. 2021. Compu-
tational Design of Weingarten Surfaces. ACM Trans. Graph. 40, 4, Article 114
(jul 2021), 11 pages. https://doi.org/10.1145/3450626.3459939

[115] Michal Piovarči, David I. W. Levin, Jason Rebello, Desai Chen, Roman Ďurikovič,
Hanspeter Pfster, Wojciech Matusik, and Piotr Didyk. 2016. An Interaction-
Aware, Perceptual Model for Non-Linear Elastic Objects. ACM Trans. Graph. 35,
4, Article 55 (July 2016), 13 pages. https://doi.org/10.1145/2897824.2925885

[116] Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung.
2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph.
32, 4, Article 81 (July 2013), 10 pages. https://doi.org/10.1145/2461912.2461957

[117] Yingying Ren, Julian Panetta, Tian Chen, Florin Isvoranu, Samuel Poincloux,
Christopher Brandt, Alison Martin, and Mark Pauly. 2021. 3D Weaving with
Curved Ribbons. ACM Trans. Graph. 40, 4, Article 127 (jul 2021), 15 pages.
https://doi.org/10.1145/3450626.3459788

[118] Timothy V Roberts, Chris Hodge, Gerard Sutton, Michael Lawless, and con-
tributors to the Vision Eye Institute IOL outcomes registry. 2018. Comparison
of Hill-radial basis function, Barrett Universal and current third generation
formulas for the calculation of intraocular lens power during cataract surgery.
Clinical & Experimental Ophthalmology 46, 3 (2018), 240–246. https://doi.org/10.
1111/ceo.13034 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/ceo.13034

[119] Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert, Markus Brand,
Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl Goedecken, Pascal Crenzin,
Ben Hurdelhey, Muhammad Abdullah, and Patrick Baudisch. 2021. Assembler3:
3D Reconstruction of Laser-Cut Models. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3411764.3445453

[120] Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert, Markus Brand,
Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl Goedecken, Pascal Crenzin,
Ben Hurdelhey, Muhammad Abdullah, and Patrick Baudisch. 2021. Assem-
bler3: 3D Reconstruction of Laser-Cut Models. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 672,
11 pages. https://doi.org/10.1145/3411764.3445453

[121] Oliver Schütze, Oliver Cuate, Adanay Martín, Sebastian Peitz, and
Michael Dellnitz. 2020. Pareto Explorer: a global/local exploration tool
for many-objective optimization problems. Engineering Optimization
52, 5 (2020), 832–855. https://doi.org/10.1080/0305215X.2019.1617286
arXiv:https://doi.org/10.1080/0305215X.2019.1617286

[122] Margaret Ellen Seehorn, Gene S-H Kim, Aashaka Desai, Megan Hofmann, and
Jennifer Mankof. 2022. Enhancing Access to High Quality Tangible Information
through Machine Embroidered Tactile Graphics. In Proceedings of the 7th Annual
ACM Symposium on Computational Fabrication (Seattle, WA, USA) (SCF ’22).
Association for Computing Machinery, New York, NY, USA, Article 23, 3 pages.
https://doi.org/10.1145/3559400.3565586

[123] Ticha Sethapakdi, Daniel Anderson, Adrian Reginald Chua Sy, and Stefanie
Mueller. 2021. Fabricaide: Fabrication-Aware Design for 2D Cutting Machines. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 664, 12 pages. https://doi.org/10.1145/3411764.3445345

[124] Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and
Yaron Lipman. 2017. Geometric Optimization via Composite Majorization. ACM
Trans. Graph. 36, 4, Article 38 (jul 2017), 11 pages. https://doi.org/10.1145/
3072959.3073618

[125] Madlaina Signer, Alexandra Ion, and Olga Sorkine-Hornung. 2021. Developable
Metamaterials: Mass-Fabricable Metamaterials by Laser-Cutting Elastic Struc-
tures. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery,
New York, NY, USA, Article 674, 13 pages. https://doi.org/10.1145/3411764.
3445666

[126] Henrik Smedberg and Sunith Bandaru. 2022. Interactive knowledge discovery
and knowledge visualization for decision support in multi-objective optimiza-
tion. European Journal of Operational Research (2022). https://doi.org/10.1016/j.
ejor.2022.09.008

[127] Haichuan Song, Jonàs Martínez, Pierre Bedell, Noémie Vennin, and Sylvain
Lefebvre. 2019. Colored Fused Filament Fabrication. ACM Trans. Graph. 38, 5,
Article 141 (jun 2019), 11 pages. https://doi.org/10.1145/3183793

[128] Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch.
2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM
Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages. https://doi.org/10.1145/
2185520.2185544

[129] T. Stützle. 1999. Local search algorithms for combinatorial problems - analysis,
improvements, and new applications. In DISKI.

[130] Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Pi-
otr Didyk, Bernd Bickel, Jaroslav Křivánek, Karol Myszkowski, and Tim Weyrich.
2019. Geometry-Aware Scattering Compensation for 3D Printing. ACM Trans.
Graph. 38, 4, Article 111 (jul 2019), 14 pages. https://doi.org/10.1145/3306346.
3322992

[131] AKM Khaled Ahsan Talukder and Kalyanmoy Deb. 2020. PaletteViz: A Visualiza-
tion Method for Functional Understanding of High-Dimensional Pareto-Optimal
Data-Sets to Aid Multi-Criteria Decision Making. IEEE Computational Intelli-
gence Magazine 15, 2 (2020), 36–48. https://doi.org/10.1109/MCI.2020.2976184

[132] Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele
Panozzo, and Denis Zorin. 2020. A Low-Parametric Rhombic Microstructure
Family for Irregular Lattices. ACM Trans. Graph. 39, 4, Article 101 (jul 2020),
20 pages. https://doi.org/10.1145/3386569.3392451

[133] Davi Colli Tozoni, Yunfan Zhou, and Denis Zorin. 2021. Optimizing Contact-
Based Assemblies. ACM Trans. Graph. 40, 6, Article 269 (dec 2021), 19 pages.
https://doi.org/10.1145/3478513.3480552

[134] Nobuyuki Umentani, Takeo Igarashi, and Niloy J. Mitra. 2015. Guided Explo-
ration of Physically Valid Shapes for Furniture Design. Commun. ACM 58, 9
(Aug. 2015), 116–124. https://doi.org/10.1145/2801945

[135] Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014.
Pteromys: Interactive Design and Optimization of Free-Formed Free-Flight
Model Airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages.
https://doi.org/10.1145/2601097.2601129

[136] Tom Valkeneers, Danny Leen, Daniel Ashbrook, and Raf Ramakers. 2019. Stack-
Mold: Rapid Prototyping of Functional Multi-Material Objects with Selec-
tive Levels of Surface Details. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 687–699.
https://doi.org/10.1145/3332165.3347915

[137] Christos Voudouris and Edward P. K. Tsang. 2003. Guided Local Search. In
Handbook of Metaheuristics. Springer, Boston, MA, Boston, MA, USA, 185–218.
https://doi.org/10.1007/0-306-48056-5_7

[138] David J. Walker. 2018. Visualisation with treemaps and sunbursts in many-
objective optimisation. Genet. Program. Evolvable Mach. 19, 3 (Sept. 2018),
421–452. https://doi.org/10.1007/s10710-018-9329-0

[139] Rui Wang, Qingfu Zhang, and Tao Zhang. 2016. Decomposition-Based Al-
gorithms Using Pareto Adaptive Scalarizing Methods. IEEE Transactions on
Evolutionary Computation 20, 6 (2016), 821–837. https://doi.org/10.1109/TEVC.
2016.2521175

[140] Michael Wessely, Yuhua Jin, Cattalyya Nuengsigkapian, Aleksei Kashapov, Isabel
P. S. Qamar, Dzmitry Tsetserukou, and Stefanie Mueller. 2021. ChromoUpdate:
Fast Design Iteration of Photochromic Color Textures Using Grayscale Previews
and Local Color Updates. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for
Computing Machinery, New York, NY, USA, Article 666, 13 pages. https:
//doi.org/10.1145/3411764.3445391

[141] Emily Whiting, Nada Ouf, Liane Makatura, Christos Mousas, Zhenyu Shu, and
Ladislav Kavan. 2017. Environment-Scale Fabrication: Replicating Outdoor
Climbing Experiences. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association
for Computing Machinery, New York, NY, USA, 1794–1804. https://doi.org/10.
1145/3025453.3025465

[142] Emily Whiting, Hijung Shin, Robert Wang, John Ochsendorf, and Frédo Durand.
2012. Structural Optimization of 3D Masonry Buildings. ACM Trans. Graph. 31,
6, Article 159 (Nov. 2012), 11 pages. https://doi.org/10.1145/2366145.2366178

[143] Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and
Jon Froehlich. 2011. Ability-Based Design: Concept, Principles and Examples.
ACM Trans. Access. Comput. 3, 3, Article 9 (apr 2011), 27 pages. https://doi.org/
10.1145/1952383.1952384

[144] Katja Wolf and Olga Sorkine-Hornung. 2019. Wallpaper Pattern Alignment
along Garment Seams. ACM Trans. Graph. 38, 4, Article 62 (jul 2019), 12 pages.
https://doi.org/10.1145/3306346.3322991

[145] Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017.
Interactive Design and Stability Analysis of Decorative Joinery for Furniture.
ACM Trans. Graph. 36, 4, Article 157a (mar 2017), 16 pages. https://doi.org/10.
1145/3072959.3054740

[146] Christopher Yu, Keenan Crane, and Stelian Coros. 2017. Computational Design
of Telescoping Structures. ACM Trans. Graph. 36, 4, Article 83 (jul 2017), 9 pages.
https://doi.org/10.1145/3072959.3073673

[147] Ya-Ting Yue, Xiaolong Zhang, Yongliang Yang, Gang Ren, Yi-King Choi, and
Wenping Wang. 2017. WireDraw: 3D Wire Sculpturing Guided with Mixed Re-
ality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machin-
ery, New York, NY, USA, 3693–3704. https://doi.org/10.1145/3025453.3025792

[148] Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel.
2017. Functionality-Aware Retargeting of Mechanisms to 3D Shapes. ACM

https://doi.org/10.1145/3173574.3173758
https://doi.org/10.1145/3450626.3459939
https://doi.org/10.1145/2897824.2925885
https://doi.org/10.1145/2461912.2461957
https://doi.org/10.1145/3450626.3459788
https://doi.org/10.1111/ceo.13034
https://doi.org/10.1111/ceo.13034
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/ceo.13034
https://doi.org/10.1145/3411764.3445453
https://doi.org/10.1145/3411764.3445453
https://doi.org/10.1080/0305215X.2019.1617286
https://arxiv.org/abs/https://doi.org/10.1080/0305215X.2019.1617286
https://doi.org/10.1145/3559400.3565586
https://doi.org/10.1145/3411764.3445345
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3411764.3445666
https://doi.org/10.1145/3411764.3445666
https://doi.org/10.1016/j.ejor.2022.09.008
https://doi.org/10.1016/j.ejor.2022.09.008
https://doi.org/10.1145/3183793
https://doi.org/10.1145/2185520.2185544
https://doi.org/10.1145/2185520.2185544
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1109/MCI.2020.2976184
https://doi.org/10.1145/3386569.3392451
https://doi.org/10.1145/3478513.3480552
https://doi.org/10.1145/2801945
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/3332165.3347915
https://doi.org/10.1007/0-306-48056-5_7
https://doi.org/10.1007/s10710-018-9329-0
https://doi.org/10.1109/TEVC.2016.2521175
https://doi.org/10.1109/TEVC.2016.2521175
https://doi.org/10.1145/3411764.3445391
https://doi.org/10.1145/3411764.3445391
https://doi.org/10.1145/3025453.3025465
https://doi.org/10.1145/3025453.3025465
https://doi.org/10.1145/2366145.2366178
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/3306346.3322991
https://doi.org/10.1145/3072959.3054740
https://doi.org/10.1145/3072959.3054740
https://doi.org/10.1145/3072959.3073673
https://doi.org/10.1145/3025453.3025792

OPTIMISM

Trans. Graph. 36, 4, Article 81 (July 2017), 13 pages. https://doi.org/10.1145/
3072959.3073710

[149] Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel.
2017. Functionality-Aware Retargeting of Mechanisms to 3D Shapes. ACM
Trans. Graph. 36, 4, Article 81 (jul 2017), 13 pages. https://doi.org/10.1145/
3072959.3073710

[150] Xiaoting Zhang, Guoxin Fang, Chengkai Dai, Jouke Verlinden, Jun Wu, Emily
Whiting, and Charlie C.L. Wang. 2017. Thermal-Comfort Design of Personalized
Casts. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (Québec City, QC, Canada) (UIST ’17). Association for
Computing Machinery, New York, NY, USA, 243–254. https://doi.org/10.1145/
3126594.3126600

[151] Xiaoting Zhang, Guoxin Fang, Melina Skouras, Gwenda Gieseler, Charlie C. L.
Wang, and Emily Whiting. 2019. Computational Design of Fabric Formwork.
ACM Trans. Graph. 38, 4, Article 109 (jul 2019), 13 pages. https://doi.org/10.
1145/3306346.3322988

[152] Yongqi Zhang, Biao Xie, Haikun Huang, Elisa Ogawa, Tongjian You, and Lap-Fai
Yu. 2019. Pose-Guided Level Design. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.
org/10.1145/3290605.3300784

[153] Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale
Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4, Article
120b (jul 2017), 16 pages. https://doi.org/10.1145/3072959.3095815

[154] Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale
Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4, Article
120b (jul 2017), 16 pages. https://doi.org/10.1145/3072959.3095815

[155] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining
Guo. 2012. Motion-Guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6,
Article 127 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366146

[156] Amit Zoran and Dror Cohen. 2018. Digital Konditorei: Programmable Taste
Structures Using a Modular Mold. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–9. https://doi.
org/10.1145/3173574.3173974

A DIGITAL FABRICATION SURVEY
(1) Abdullah, Taraz, Kommana, Katakura, Kovacs, Shigeyama,

Roumen, and Baudisch [12]
(2) Arora, Jacobson, Langlois, Huang, Mueller, Matusik, Shamir,

Singh, and Levin [14]
(3) Auzinger, Heidrich, and Bickel [16]
(4) Babaei, Vidimče, Foshey, Kaspar, Didyk, and Matusik [17]
(5) Bächer, Hepp, Pece, Kry, Bickel, Thomaszewski, and Hilliges

[19]
(6) Bhooshan, Van Mele, and Block [21]
(7) Chang, Tsao, Liao, Yong, Yeh, and Chen [30]
(8) Chen, Coros, and Hudson [33]
(9) Chen, Coros, Mankof, and Hudson [34]
(10) Chen, Levin, Matusik, and Kaufman [31]
(11) Chen, Tao, Wang, Kang, Grossman, Coros, and Hudson [35]
(12) Chidambaram, Zhang, Sundararajan, Elmqvist, and Ramani

[36]
(13) Cucerca, Didyk, Seidel, and Babaei [40]
(14) Dayama, Todi, Saarelainen, and Oulasvirta [41]
(15) Desai, McCann, and Coros [44]
(16) Doosti, Panetta, and Babaei [45]
(17) Duan, Wierzynski, and Nachman [49]
(18) Dudley, Jacques, and Kristensson [50]
(19) Du, Schulz, Zhu, Bickel, and Matusik [48]
(20) Gebhardt and Hilliges [54]
(21) Gu, Narayanan, Wang, Luo, Jain, Lu, Qin, Wang, McCann,

and Yao [58]
(22) Hao, Kim, and Lien [60]
(23) Hao and Lien [61]

CHI ’23, April 23–28, 2023, Hamburg, Germany

(24) Hergel, Hinz, Lefebvre, and Thomaszewski [62]
(25) Ion, Lindlbauer, Herholz, Alexa, and Baudisch [71]
(26) Jiang, Stuerzlinger, Zwicker, and Lutteroth [73]
(27) Jin, Qamar, Wessely, and Mueller [74]
(28) Kadner, Keller, and Rothkopf [75]
(29) Kilian, Monszpart, and Mitra [76]
(30) Konaković, Crane, Deng, Bouaziz, Piker, and Pauly [77]
(31) Koyama and Goto [79]
(32) Koyama, Sato, Sakamoto, and Igarashi [81]
(33) Langerak et al. [84]
(34) Lee, Kim, and Oakley [85]
(35) Leen, Veuskens, Luyten, and Ramakers [86]
(36) Li, Levin, Matusik, and Zheng [88]
(37) Lindlbauer, Feit, and Hilliges [89]
(38) Lomas, Forlizzi, Poonwala, Patel, Shodhan, Patel, Koedinger,

and Brunskill [91]
(39) Luzhnica and Veas [95]
(40) McIntosh, Zajac, Stefan, Bergström, and Hornbæk [98]
(41) Megaro, Zehnder, Bächer, Coros, Gross, and Thomaszewski

[101]
(42) Miguel, Lepoutre, and Bickel [104]
(43) Montano Murillo et al. [105]
(44) Morales, Marzo, Subramanian, and Martínez [106]
(45) Musialski, Hafner, Rist, Birsak, Wimmer, and Kobbelt [107]
(46) Nindel, Iser, Rittig, Wilkie, and Křivánek [109]
(47) Ogata and Koyama [110]
(48) Panetta, Isvoranu, Chen, Siéfert, Roman, and Pauly [112]
(49) Park, Gebhardt, Rädle, Feit, Vrzakova, Dayama, Yeo, Klok-

mose, Quigley, Oulasvirta, and Hilliges [113]
(50) Pellis, Kilian, Pottmann, and Pauly [114]
(51) Ren, Panetta, Chen, Isvoranu, Poincloux, Brandt, Martin, and

Pauly [117]
(52) Roumen, Kommana, Apel, Lempert, Brand, Brendel, Seidel,

Rambold, Goedecken, Crenzin, Hurdelhey, Abdullah, and
Baudisch [120]

(53) Sethapakdi, Anderson, Sy, and Mueller [123]
(54) Shtengel, Poranne, Sorkine-Hornung, Kovalsky, and Lipman

[124]
(55) Signer, Ion, and Sorkine-Hornung [125]
(56) Song, Martínez, Bedell, Vennin, and Lefebvre [127]
(57) Sumin, Rittig, Babaei, Nindel, Wilkie, Didyk, Bickel, Křivánek,

Myszkowski, and Weyrich [130]
(58) Tozoni, Dumas, Jiang, Panetta, Panozzo, and Zorin [132]
(59) Tozoni, Zhou, and Zorin [133]
(60) Valkeneers, Leen, Ashbrook, and Ramakers [136]
(61) Wessely et al. [140]
(62) Whiting, Ouf, Makatura, Mousas, Shu, and Kavan [141]
(63) Wolf and Sorkine-Hornung [144]
(64) Yao, Kaufman, Gingold, and Agrawala [145]
(65) Yu, Crane, and Coros [146]
(66) Yue, Zhang, Yang, Ren, Choi, and Wang [147]
(67) Zhang, Auzinger, Ceylan, Li, and Bickel [149]
(68) Zhang, Fang, Dai, Verlinden, Wu, Whiting, and Wang [150]
(69) Zhang, Fang, Skouras, Gieseler, Wang, and Whiting [151]
(70) Zhang, Xie, Huang, Ogawa, You, and Yu [152]
(71) Zhu, Skouras, Chen, and Matusik [154]
(72) Zoran and Cohen [156]

https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3126594.3126600
https://doi.org/10.1145/3126594.3126600
https://doi.org/10.1145/3306346.3322988
https://doi.org/10.1145/3306346.3322988
https://doi.org/10.1145/3290605.3300784
https://doi.org/10.1145/3290605.3300784
https://doi.org/10.1145/3072959.3095815
https://doi.org/10.1145/3072959.3095815
https://doi.org/10.1145/2366145.2366146
https://doi.org/10.1145/3173574.3173974
https://doi.org/10.1145/3173574.3173974

	Abstract
	1 Introduction
	2 Related Work
	2.1 Optimization in Fabrication
	2.2 Multi-Objective Optimization
	2.3 Toolkits to Support Optimization

	3 OPTIMISM Toolkit
	3.1 Guiding Principles
	3.2 OPTIMISM's Three Users
	3.3 System Overview and Definitions

	4 Domain Specific Heuristic Library
	4.1 Objectives
	4.2 Modifiers
	4.3 Heuristic Maps
	4.4 Implementing Heuristic Libraries

	5 Metaheuristic Library
	5.1 Design Population
	5.2 Stopping Criteria
	5.3 Design and Modifier Selectors

	6 Developing with OPTIMISM
	7 Designing with Optimizers
	8 Demonstrations
	8.1 Cataract Lens Selection
	8.2 Occupational Therapy Splints
	8.3 Tactile Graphic Optimization
	8.4 Replicating Tile-Decors
	8.5 Optimizing Knitted Textures

	9 Discussion
	9.1 Suitable Optimization Domains
	9.2 Flexibility of Optimizers

	10 Limitations
	11 Conclusion
	Acknowledgments
	References
	A Digital Fabrication Survey

