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ABSTRACT 
For non-technical domain experts and designers it can be a substan-
tial challenge to create designs that meet domain specifc goals. This 
presents an opportunity to create specialized tools that produce 
optimized designs in the domain. However, implementing domain-
specifc optimization methods requires a rare combination of pro-
gramming and domain expertise. Creating fexible design tools with 
re-confgurable optimizers that can tackle a variety of problems 
in a domain requires even more domain and programming exper-
tise. We present OPTIMISM, a toolkit which enables programmers 
and domain experts to collaboratively implement an optimization 
component of design tools. OPTIMISM supports the implementa-
tion of metaheuristic optimization methods by factoring them into 
easy to implement and reuse components: objectives that measure 
desirable qualities in the domain, modifers which make useful 
changes to designs, design and modifer selectors which determine 
how the optimizer steps through the search space, and stopping 
criteria that determine when to return results. Implementing opti-
mizers with OPTIMISM shifts the burden of domain expertise from 
programmers to domain experts. 
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1 INTRODUCTION 
Optimization methods can help users generate unique solutions 
while considering a variety of domain specifc goals, but building 
optimizers requires the expertise and collaboration of programmers 
and domain experts who tailor these methods to the domain. This 
complex collaboration between programmers and domain experts 
is critical, but under-supported. Existing systems tend to focus on 
supporting the programmer by ofering of-the-shelf implementa-
tions of standard and advanced optimization methods. However, the 
process of incorporating domain expertise to tailor these methods 
to a domain is left to the development team. There are opportunities 
to support the implementation of domain specifc optimizers by 
enabling collaboration between domain experts and programmers. 
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Table 1: Summary of optimization methods distributed across literature survey. See Appendix A 

Venue 
Percentage of Total Papers at Venue Paper 

Bayesian Constraint Satisfaction Topology Convex Stochastic Heuristic Metaheuristic Count 

CHI [3] 11.1 11.1 7.4 14.8 7.4 25.9 22.2 27 
SCF [8] 0.0 0.0 33.3 16.7 0.0 33.3 16.7 6 
TOG [2] 3.6 3.6 7.1 64.3 0.0 7.1 14.3 28 
UIST [9] 0.0 9.1 0.0 9.1 9.1 36.4 36.4 11 

Paper Count 4 5 6 24 3 15 15 72 
Percentage of Total Papers 

Example Paper 
5.6 
[80] 

6.9 
[100] 

8.3 
[153] 

33.3 
[108] 

4.2 
[43] 

20.8 
[11] 

20.8 
[39] 

100.0 

We present the Optimization Programming Toolkit Integrating 
Metaheuristic Intuitive Search Methods. OPTIMISM helps non-
technical domain experts and programmers collaboratively imple-
ment optimizers in diverse domains. Designers, who have domain 
expertise but do not program, access optimizers through an au-
tomatically generated GUI. OPTIMISM is domain agnostic and 
deconstructs many metaheuristic methods into a small set of plug-
gable operations called objectives and modifers. These components 
help domain experts express their goals and modifcation strategies. 
OPTIMISM provides a domain agnostic library of pluggable com-
ponents that help programmers rapidly prototype domain specifc 
optimizers that apply objectives and modifers. 

We have developed OPTIMISM based on three principles. First, 
OPTIMISM empowers domain experts to participate in optimizer 
implementation. Second, OPTIMISM enables programmers to fexi-
bly experiment with a variety of optimization methods with mini-
mal additional coding. Third, OPTIMISM produces satisfactory and 
sufcient optimizers. OPTIMISM serves these principles through 
a generalized and simple framework that can implement a wide 
variety optimization methods. Rather than ofering a one size fts all 
solution, OPTIMISM tailors to the unique properties of a domain. 

We demonstrate fve tools to show how OPTIMISM: (1) supported 
an Ophthalmologist and programmer in collaboratively building a 
cataract lens selection tool, (2) enabled us to derive a thumb splint 
optimizer from the domain expertise of occupational therapists’, 
(3) assists blind designers in creating satisfactory and useful cus-
tomized tactile graphics, (4) enables us to fexibly experiment with 
diferent optimizers that replicate an existing generative design tool 
[32], and (5) amplifes knitters’ domain expertise. 

2 RELATED WORK 
Optimization methods have the the potential to make complex 
design tasks accessible to new users (e.g., people with disabilities 
[96, 143], clinicians [66, 69, 83]) because they can generate solutions 
that are tuned to ft highly specifc needs (e.g., customized medical 
devices). While individually, these optimization methods can be 
simpler to develop, they are often out of the reach of domain experts 
who cannot program but would beneft from these tools. Further, 
optimization methods are a critical backbone to the growing do-
main of generative design for digital fabrication. In this section, 
we examine how optimization has been used in digital fabrication, 
the benefts and limitations of diferent optimization methods in 
these domains, and existing toolkits that support implementation 
of optimizers. 

2.1 Optimization in Fabrication 
Researchers have explored a wide range of digital fabrication opti-
mization problems (e.g., fabricating “surface like objects” [32], bal-
ancing 3D models [20, 72, 116], improving model strength [128, 142], 
or generating deformable mechanisms [18, 22, 38, 99, 115, 148]). We 
analysed 210 research articles from four research venues relevant 
to human computer interaction and digital fabrication published 
between 2016 and 2021 that included author keywords related to 
digital fabrication (e.g., fabrication, 3D printing, laser cutting) or 
optimization (e.g., optimize, inverse design, generative design). We 
then narrowed our analysis to the 72 papers that contributed a opti-
mization method for digital fabrication. We excluded papers that do 
not use an optimization method or described a generalized toolkit 
related to fabrication or optimization. We inductively categorized 
the broader categories of optimization used in this body of work 
(Table 1). Optimization methods depend on properties of the search 
space. For example, convex optimization methods are desirably ef-
cient and tend to produce quality local-maxima but rely on domains 
being represented as a convex search space. Many non-technical 
domain experts struggle to understand domains in this way[15]. 
Similarly, constraint satisfaction methods require developers to 
express a domain as a solvable set of equations. 

Even when the search space is not amenable to these methods, 
the diversity of viable, but potentially ill-suited, optimization meth-
ods is overwhelming. In poorly characterized domains, we can turn 
to heuristic, stochastic, and metaheuristic methods with make up 
45.8% of the methods used in our survey. Heuristic methods (e.g., 
[29, 47, 51, 94, 119, 134, 135]) apply information about the domain 
to guide the search. Blum and Roli [24] call heuristic methods “in-
tense” search methods because they narrowly apply domain specifc 
strategies to fnd local maxima. Alternatively, stochastic methods 
like Monte Carlo methods [43], use randomized search patterns 
to jump over local maxima. Blum and Roli [24] call these methods 
“diverse” because they sample widely from the search space. 

Metaheuristic methods combine heuristics and stochastic meth-
ods to create high-level, problem-agnostic strategies to guide a 
localized search process [129]. Diferent metaheuristics control the 
“intensity” and “diversity” [24] of the optimization method with: 
“intense” heuristic based search on one end of the spectrum and “di-
verse” random search methods on the other. Metaheuristic optimiza-
tion trades speed and guarantees of optimality for fexibility. These 
methods work best in domains with where objectives can be clearly 
defned and a variety of simple strategies for improving designs 
(i.e., heuristics), but which strategy should be applied in any given 
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iteration is unclear. Essentially, metaheuristic methods are efective 
at sampling a wide variety of search strategies—doing the manual 
work of a designer but much faster. Like manual design, meta-
heuristic methods do not guarantee optimality or convergence on a 
solution. Despite this, these methods have been efective in a wide 
variety of fabrication domains (e.g., [13, 39, 43, 57, 68, 70, 87, 155]). 

2.2 Multi-Objective Optimization 
Often optimization involves multiple, conficting objectives. Instead 
of reducing complex design tasks to one objective function, multi-
objective optimization (MOO) methods allow users to explore the 
trade ofs between objectives. MOO frames optimization problems 
as a design space defned by design parameters and a vector of 
objectives that map designs to an objective-space. The outer bound-
ary of the objective space, where every design on the boundary 
cannot improve an objective without worsening another, is called 
the Pareto front. Notably, the size of the Pareto front expands expo-
nentially relative to the number of objectives, making exploration 
of the Pareto front intractable for many high-dimension problems. 
Methods for fnding the Pareto front is a growing area of research; 
like optimization methods more broadly, no method works well 
or guarantees optimality in all domains. The principle challenge 
of building a domain specifc optimizer is to fnd an optimization 
method that is well matched to the domain and objective space and 
users need tools to help them create these unique optimizers. 

To fnd the Pareto front, an optimization method must explore 
the design space by fnding as many sample designs as possible that 
maximize diferent combinations of objectives. There are two main 
approaches to searching the design space [42]. The frst are methods 
that decompose the search into many single-objective optimization 
problems [139] by either scalarizing (i.e., weighting and combining 
each objective) (e.g., weighted-sum method [97]) or constraining 
objectives (e.g., �-constraint methods [59]). Through many runs of 
these single-objective optimizers, the multi-objective optimizer can 
sample new regions of the Pareto front. The second set of methods 
build up the population of discovered designs without being guided 
by a specifc objective function using recombination and mutation 
of the population (e.g., evolutionary methods [37]). Particularly 
in discrete domains, both decomposition and population methods 
may apply metaheuristics when generating new results that se-
lect for some combination of: Pareto dominant designs, designs 
that dominate decomposed objective functions, and indicators of 
improvement [28, 90]. In many real world problems, where the 
number of objectives may be high (e.g., greater than three), the 
methods may be guided towards high priority regions of the Pareto 
front either by interaction with the user (e.g.,[121]) or by Bayesian 
methods [53]. 

Given a Pareto front, users are challenged to choose a solution. 
One approach is to only search for the section of the Pareto front 
that is relevant to the designer by narrowing the search with a 
priori rankings of objectives (e.g., user-set weights in scalariza-
tion) [103]. Depending on the domain, the user may not be able 
to provide quality weights and this can result in designs that do 
not meet their needs. However, these approaches one or only a few 
solutions making it trivial for users to select a solution if a satis-
factory solution is discovered. Alternatively, a posteriori methods 

search for a wide region of the Pareto front and then ask users to 
make decisions based on discovered trade-ofs between objectives 
[103]. Particularly with many objectives, this may result in the user 
having to choose from many possible solutions. Researchers have 
proposed a variety of visualization tools to help users make deci-
sions (e.g., [78, 92, 131, 138]), however each of these visualizations 
presume that the designer understands key optimization concepts. 
For example, Smedberg and Bandaru’s interactive knowledge dis-
covery tools presumes that designers understand that optimization 
methods imply a mapping from a design space to an objective space 
[126]. In many relevant domains this assumption may not hold; 
for example, blind designers cannot access such visualizations for 
decision making [67] and prior work shows that clinicians prefer 
clinical CAD tools to follow a prescriptive model that generates 
only one efective solution [69]. Again, method selection depends 
on the domain and the needs and preferences of designers. 

2.3 Toolkits to Support Optimization 
To evaluate optimization toolkits, we can consider criteria described 
by Olsen [111]: “fexibility” to rapidly making design changes; “ex-
pressive leverage”, accomplishing “more by expressing less”; “expres-
sive match” of the toolkit model to the user’s mental model of the 
problem; and “ease of combination” of simple primitives into a wide 
set of complex solutions. Krish describes optimization as consisting 
of: a search space or domain, a way of generating variation in that 
domain, and a method for evaluating designs in that domain [82]. 
A toolkit for optimization, ideally, gives developers fexible ways to 
express these components in a way that matches their mental model 
of the domain. Most optimization toolkits are infexible and only 
ofer established optimization algorithms, rather than recombinable 
primitives that enable programmers to prototype their own solu-
tions. Consider, toolkits that support metaheuristic optimization 
(e.g., [5–7]), MOO (e.g., [23]), or optimization more broadly (e.g., 
[1, 4]). These systems are infexible; limited to expressing existing 
algorithms. Further, their expressive match is dependent on how 
well standardized format ft users’ mental models. These tools are 
designed for experienced programmers rather than domain experts. 

Toolkits in the space of convex optimization [27] and Bayesian 
optimization [56] ofer a promising approach. Burnell et al. de-
veloped GPKit [27] with an ethnographic study of experts who 
use convex optimization. The toolkit supports highly fexible de-
velopment of a convex expression of a design space that has an 
expressive match with their users. These users have broader techni-
cal backgrounds but do not included domain experts who have little 
mathematical or programming experience. Similarly, Golovin et al’s 
Google Vizier [56] helps programmers tune Bayesian optimization 
methods to solve new problems where characteristics of the domain 
space are unknown (e.g., cookie recipes, GUIs). Vizier is a highly 
fexible framework and can be leveraged to express a variety of 
black-box optimization problems. Our goal is to contribute to the 
same space of toolkits by focusing on heuristic methods, stochastic 
methods, and metaheuristic methods. By combining the expressive 
match of heuristic methods and the fexibility of stochastic methods, 
we aim to support new users in a wide set of domains. 
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3 OPTIMISM TOOLKIT 
OPTIMISM1 enables domain experts and programmers collabora-
tively implement a domain specifc optimizer and automatically 
produce a GUI for designers. The domain expert and programmer 
provide OPTIMISM with domain specifc heuristic libraries that 
express design strategies in the domain. These heuristics are iter-
atively applied by metaheuristic optimizers which programmers 
confgure with elements of OPTIMISM’s domain agnostic library. 
In the following sections, we describe OPTIMISM’s: three guiding 
principles, three types of users, framework structure, and how it is 
used. We contextualize the system with the scenario of creating a 
cookie optimizer based on heuristics from a cooking show [102]. 

3.1 Guiding Principles 
Empowerment of Domain Experts. Giving domain experts the 

fexibility to describe the domain and search strategies in a GUI. 

Flexible Optimizer Construction. Optimizers can be reconfgured 
through modular, easy to understand, components. 

Produce Satisfcing Designs. Optimizers efciently (e.g., faster 
than manual design) produce satisfactory and sufcient (e.g., equiv-
alent to or better than manual results) designs [26]. 

3.2 OPTIMISM’s Three Users 
We distinguish between three types of users: domain-experts, pro-
grammers, and designers . In a development stage, a programmer 
and domain expert collaboratively develop a domain specifc op-
timizer by refning design representations and testing diferent 
optimizer confgurations. In the design phase, independent of the 
domain expert and programmer, the designer uses this optimizer 
to produce designs that satisfy their needs. Notably, we do not 
assume that any of these users are familiar with optimization con-
cepts. Programmers are only expected to have basic programming 
experience (e.g., implementing classes and functions) and neither 
domain-experts nor designers need to program. Instead, they must 
have relevant knowledge from a domain such as an understanding 
of relevant design variables, goals, and their relationships. Domain-
experts and designers have the same backgrounds and are only 
distinguished by the phase they participate in. 

3.3 System Overview and Defnitions 
We have developed simple abstractions that can capture metaheuris-
tic optimization methods. OPTIMISM optimizers consist of plug-
gable components (Table 2) from a domain specifc heuristic library 
and a domain agnostic library. The optimizers are seeded with 
design representations and then follow an iterative optimization 
process (Algorithm 1). First, these designs are scored by an objec-
tive function which domain experts and designers construct from 
domain specifc objectives. The evaluated designs enter a design 
population which has a limited capacity set by the programmer. 
As that capacity is exceeded, random designs, with a bias towards 
poor performing designs, are pruned from the population. Second, 
a domain agnostic design selector chooses a design from the popula-
tion for the next iteration. Then a domain agnostic modifer selector 

1Framework available at https://github.com/mhofmann-Khoury/optimism-toolkit 

Hofmann et. al., 

1 Input ����� : a set of starting designs provided by designers 
2 Output D: the population of generated designs 
3 D ← {}; 
4 for � ∈ ����� do // Evaluate Seed Designs 

5 �� ← �������� (�); 
6 add � to D sorted by �� ; 
7 end 
8 while not ���� (D) do // Main Optimization Loop 

9 � ← ������_������(D) ; 
10 � ← ������_���� � ��� (�, H, D) ; 

′ 11 � ← �(�) ; 
12 �� ′ ← �������� (� ′) ; 
13 add � ′ to D sorted by �� ′ ; 
14 prune D to population_cap; 
15 end 
16 return D; 

Algorithm 1: The iterative structure of an optimizer. 

chooses a domain specifc modifer to apply to the selected design. 
The modifer changes the design, producing a new design which 
is evaluated and added to the population; modifers step through 
the design space. When the population of designs meets a stopping 
criteria it is returned to the designer. Otherwise, the cycle repeats. 

In the following sections, we describe the components of an 
optimizer organized by their source libraries. OPTIMISM’s abstrac-
tions help to minimize the workload and level of technical expertise 
needed from the domain expert. Many aspects of OPTIMISM are 
domain agnostic allowing them to be readily reused and swapped 
out when creating an optimizer without input from a domain expert. 
A key exception is the heuristic library which organizes domain 
specifc code into easy to implement and modular components. 

4 DOMAIN SPECIFIC HEURISTIC LIBRARY 
Domain experts and programmers implement the domain specifc 
components of their optimizer and organize them in a heuristic 
library. The domain expert frst describes how to represent designs 
and the programmer creates a corresponding design representation. 
OPTIMISM does not require a specifc structure for representations 
since they are only accessed by objectives and modifers imple-
mented by the programmer. In most of our demonstrations, a simple 
set of parameters was a sufcient representation. For example, Chef 
Alton describes cookies as recipes and Steve implements a Python 
class with a parameter for each ingredient amount. 

Next, the domain expert describes how to evaluate low-level 
design goals. Continuing the example, Chef Alton describes ways 
of estimating key properties of a recipe (e.g., melting-point, acidity) 
that will afect the texture of the cookie. Adjusting these proper-
ties will help Alton design diferent cookie textures; for instance he 
notes that crispy cookies have “a relatively low melting temperature 
so the batter spreads before setting” [102]. Each of these properties 
is defned by proportions of key ingredients which Steve can evalu-
ate with simple functions. The domain expert also describes how 
they modify designs. For example, Alton explains how to adjust the 
proportions of ingredients to modify diferent key properties and 
Steve can implement this as adjustments to ingredient amounts. 

https://github.com/mhofmann-Khoury/optimism-toolkit
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Table 2: A summary of components of an OPTIMISM optimizer. 

Term Defnition Notation Example 

Domain Specifc 
Heuristic Library of domain specifc elements implemented by domain experts and programmers. 
Library 
Design A data structure that represents designs in a domain � A set of parameters that defne a cookie recipe Representation 

A function that evaluates how well A function that compares a cookie recipe’s estimated Objective 0 ≤ � (�) ≤ 1∀� ∈ Oa design meets a specifed criteria or design goal melting point to a target value set by a designer. 
Objective A function that evaluates the weighted set of 

�������� (�) see Equation 1 Function objectives to assess a design’s quality 
A function that creates a new design Modifer �(�) = � ′∀� ∈ M A function that sets the fat used in a recipe to butter by modifying a generated design. 
A set of weights between modifers and objectives Heuristic A designer sets a weight of 2.0 between a that express how efective a modifer is ��→� ∈ HMap low-melting point objective and a butter modifer expected to be at improving an objective 

Domain Agnostic 
Metaheuristic 
Library 
Design 
Population 
Design 
Selector 
Modifer 
Selector 
Stopping 
Criteria 

Library of domain agnostic components of a metaheuristic optimizer 

A data structure that organizes generated designs D see subsection 5.1 

A function that selects a design from A function which returns the highest scoring 
������_������(D) = � the design population design that has been generated. 

A function that selects a modifer A function that selects the modifer that is 
������_���� � ��� (�, H, D) = � to use on a design expected to most improve the design 

A function that determines if A function that returns True if 
���� (D) = {����, �����}the optimization results should be returned the design scores more a threshold value. 

4.1 Objectives 
The optimizer’s objective function measures how well designs meet 
the designer’s goals. OPTIMISM supports metaheuristic methods 
that reduce multi-objective optimization problems into scalarized 
objective functions weighted by the designer’s preferences. Pro-
grammers and domain experts collaboratively build a library of 
objectives. Designers combine these objectives to defne their spe-
cifc design goals. Consider some cookie objectives that can be 
combined to make crispy cookies. Alton explains that crispiness is 
increased by lowering the batter’s melting point. A high portion of 
low-melting point fats (e.g., butter) and lower acidity will reduce 
the melting point [102]. Thus, objectives that measure the portion 
of butter and acidity can maximizes crispiness. 

In OPTIMISM, designers construct scalarized multi-objective 
functions by defning a weighting a set of objectives based on their 
importance. Optimizers seek to maximize this scalarized function. 
Objectives are functions, implemented by the programmer and do-
main expert, that estimates how well a design performs under some 
criteria by returning a normalized value between 0 and 1. Given a 
set of objectives, � ∈ O, with weights �� , the customized objective 
function will be the weighted sum of objectives’ score (Equation 1). 
As we will demonstrate, domain experts can often defne simple 
objectives for a variety of important criteria that designers can 
combine to defne a variety of multi-objective problems. 

∑ 
max � (�) = ��� (�) (1) 
� 

� ∈O 

4.2 Modifers 
Modifers express how designs can be improved to maximize the 
objective function. Modifers are functions that take in a design 
and produce a new, slightly diferent, design. They take small steps 
through the search space similar to steps taken by a designer when 
prototyping. Consider four simple cookie modifers: two change 
the proportion of butter to shortening and two that change the 
proportion of baking soda to baking powder. These modifers will 
directly infuence the melting point of the batter and thus the crispi-
ness of the cookies. Note that the modifers change proportions 
of ingredients, not just amounts. This ensures that the amount of 
ingredients never gets out of proportion (e.g., cookies made only of 
butter). Ensuring modifers do not violate design requirements is 
left up to the development team. 

4.3 Heuristic Maps 
Heuristics express rules of thumb for improving objective scores. 
Diferent modifers will afect diferent objectives; heuristics en-
capsulate this relationship. In OPTIMISM, a modifers tendency to 
improve an objective is expressed with an heuristic weight. That is 
a modifer, �, that should improve an objective, � , has a heuristic 
weight ��−>� . We use heuristic weights to measure the expected 
value of applying a modifer to a design. The expected value is the 
sum of potential increases in objectives’ scores between a design 

′ � and the resulting design from applying a modifers, �(�) = � , 
multiplied by the heuristic weight (Equation 2). ∑ 

� (� ′ ,�) = ��−>� �� (1 − � (�)) (2) 
� ∈O 
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Figure 1: Example Heuristic Map

1 Input 𝑠𝑒𝑒𝑑𝑠: Sample designs provided by domain experts
2 Input O: Objectives
3 InputM: Modifiers
4 Input 𝑅𝑜𝑢𝑛𝑑𝑠: the number of iterations to generate samples
5 Output H: The estimated heuristic map
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑠𝑒𝑒𝑑𝑠;
7 𝑑𝑒𝑠𝑖𝑔𝑛𝑠_𝑏𝑦_𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 ← {} ;
8 𝑜_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠_𝑏𝑦_𝑚 ← {} ;
9 for 𝑟𝑜𝑢𝑛𝑑 ∈ 𝑅𝑜𝑢𝑛𝑑𝑠 do
10 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ← {} ;
11 for 𝑑 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 do
12 for𝑚 ∈ M do
13 𝑑′ ←𝑚(𝑑) ;

′14 add 𝑑 to 𝑑𝑒𝑠𝑖𝑔𝑛𝑠_𝑏𝑦_𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 [𝑚];
15 add 𝑑′ to 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ;
16 for 𝑜 ∈ O do
17 if 𝑜 ′(𝑑) < 𝑜 (𝑑 ) then
18 increment 𝑜_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠_𝑏𝑦_𝑚[𝑜] [𝑚] ;
19 end
20 end
21 end
22 end
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 ← 𝑛𝑒𝑥𝑡_𝑟𝑜𝑢𝑛𝑑 ;
24 end
25 H← {};
26 for𝑚 ∈ M do
27 for 𝑜 ∈ O do
28 𝛼𝑚−>𝑜 = 𝑃 (𝑜↑ |𝑚) ; // See Equation 3

29 if 𝛼𝑚−>𝑜 > 0 then
30 H[𝑜] [𝑚] ← 𝛼𝑚−>𝑜 ;
31 end
32 end
33 end
34 return H;

Algorithm 2: Sample Data Generation.

𝑑′| ∈ 𝐷𝑚 |𝑜 (𝑑 ′) < 𝑜 (𝑑 ) |
𝑃 (𝑜↑ |𝑚) = (3)|𝐷𝑚 |

We make the relationship between objectives and modifiers ex-
plicit in a heuristic map (Figure 1) composed of these weighted
pairs. Each modifier in a heuristic map can be mapped to multiple
objectives and visa-versa. Again, consider the cookie example. In-
creasing the proportion of butter will likely improve a spreadable
fat objective. Similarly, increasing the proportion of baking soda
should improve a low-acidity objective. To a lesser extent, because
Chef Alton notes that butter is slightly acidic, increasing the butter
should also improve the low-acidity objective. Domain experts and
designers, without the help of programmers, can either manually
construct heuristic maps in the automatically generated GUI or
have OPTIMISM generate them from a curated set of seed designs.

Our tuning algorithm estimates heuristic weights given a set
of designs, 𝐷𝑚 , generated by applying a modifier to a previously
generated design. We set the heuristic weight to the proportion
of new designs that increased the objective score over all designs
generated by the modifier (Equation 3). Domain experts seed the
tuning method with curated designs. Over multiple rounds, we
apply each modifier to the designs and track increases in each
objective’s score (Algorithm 2).

The heuristic library is the foundation of domain specific optimiz-
ers. The highly flexible structures of composing objective functions
from weighted objectives, modifiers as simple strategies for im-
proving designs, and heuristic maps that associate modifiers with
the objectives scaffolds heuristic implementation in a way that is
accessible to domain experts and programmers.

4.4 Implementing Heuristic Libraries

1 r e g i s t r y = mak e _ r e g i s t r a r ( )
2 @reg i s t r y ( Heur i s t i c_Component . Ob j e c t i v e ,
3 " h i g h _ s o l i d _ f a t " )
4 @ inv e r s e _ o b j e c t i v e
5 @reg i s t r y ( Heur i s t i c_Component . Ob j e c t i v e , )
6 def h i g h _ s p r e a d a b l e _ f a t ( c ook i e : Cookie ) −> f l o a t :
7 return cook i e . b u t t e r _ cup / 1 . 0
8 @reg i s t r y ( Heur i s t i c_Component . Mod i f i e r )
9 def add_bu t t e r ( cook i e : Cookie , inc rement : f l o a t = 0 . 2 5 ) :
10 cook i e . s ho r t en i ng_ cup s −= inc rement
11 cook i e . b u t t e r _ cup += inc rement
12 @reg i s t r y ( Heur i s t i c_Component . Mod i f i e r )
13 def add_ sho r t en ing ( cook i e : Cookie ,
14 inc rement : f l oa t = 0 . 2 5 ) :
15 cook i e . s ho r t en i ng_ cup s += inc rement
16 cook i e . b u t t e r _ cup −= inc rement

Figure 2: Example cookie heuristic library code registered to
the cookie heuristic registry using Python decorators.

To build a domain specific heuristic library, the programmer
writes objective and modifier functions with a signature that starts
with a parameter for the design (e.g., a cookie recipe) being eval-
uated or modified and any additional default parameters. Then,
the programmer registers these components in the library using a
python decorator (e.g., Figure 2.2). The decorator stores a pointer
to the function in a domain specific registry (Figure 2.1). When
the heuristic map interface is generated, it will reference this reg-
istry and make each registered element available with the given
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Figure 3: Objective and heuristic weights are set in a GUI.

function-name or an optional identifier provided in the decora-
tor (e.g., “high_solid_fat”). We provide a specialized set of deco-
rators which can modify the output of objectives and modifiers
based on common patterns. For instance, the inverse decorator (Fig-
ure 2.4) will return the inverse value of an objective (e.g., 𝑖𝑛𝑣 (𝑜, 𝑑) =
1 − 𝑜 (𝑑)). A domain specific GUI is generated from the registry
(Figure 3) with objectives listed in a drop down menu enabling
designers to assign weights to objectives for a specific optimization.
Additional parameters can be modified in the Objective Parame-
ters column of the weighting table. Similarly, designers create a
heuristic map by associating modifiers with objectives.

5 METAHEURISTIC LIBRARY
Metaheuristic optimization combines domain specific heuristics
with stochastic search strategies to form a wide variety of optimiza-
tion methods. OPTIMISM separates the domain specific and domain
agnostic components of these methods to reduce the burden on
development teams. Metaheuristic methods are characterized by
how designs are chosen and modified in each iteration. Simulated
annealing, for example, is defined by how designs are selected in
each iteration, but design modification is left up to the programmer.
Monte-Carlo Markov chains, on the other hand, are defined by the
probabilities of moving from one state to the next (i.e., modifier
selection) but cannot jump around the discovered design space.
Making these different strategies pluggable enables programmers
to mix and match methods until they find one suited to the domain.
Programmers may identify established methods that are well suited
to their domain or compose new methods.

We present OPTIMISM’s domain agnostic library which defines
a optimizer’s metaheuristic strategy. In OPTIMISM, metaheuristics
consist of three components: stopping criteria, design selectors, and
modifier selectors. Stopping criteria determine when to stop iterat-
ing. A design selector chooses a design to modify in an iteration.

A modifier selector determines which modifier to apply to that
design. Each of these components make their decisions based on
the scalarized objective function and objective scores, the heuristic
map, and information collected during optimization in a design
population. Our domain agnostic library enables programmers to
implement a wide variety of optimizers by mixing and matching
these elements without writing any new optimization code.

5.1 Design Population

Table 3: The types of information maintained by an opti-
mizer’s Design-Population.

Value Key to Generated Designs
Iterations Iteration which generated the design.

Scores Objective function score of design.
(i.e., 𝑓 (𝑑), see Equation 1)

Score
Differences

Difference in score from prior design.
(i.e., 𝑓 (𝑑′) − 𝑓 (𝑑)).

Objective Scores Individual Objective scores of design.
(i.e., 𝑜 (𝑑)∀𝑜 ∈ O).

Objective Score
Differences

Differences in objective scores from prior design.
(i.e., 𝑜 (𝑑′) − 𝑜 (𝑑))

Modifier Used Modifier used to generate design.

OPTIMISM organizes and sorts generated designs in a domain
agnostic format called the design population. It collects data about
how well a design performed under the objective-function and
individual objectives, the change from the prior design, the iteration
in which the design was generated, and the modifier that generated
it (Table 3). The design population is self-pruning. When it reaches
a maximum size it will randomly remove a design to maintain that
capacity. Pruning is biased to remove the worst performing designs.

The design population will be returned to the designer after
optimization so that they can access and organize designs based on
different criteria. Additionally, after optimization, we use Deb’s [42]
algorithm for finding the non-dominated front of a set of designs to
calculate the Pareto set. Designers can view designs on the Pareto
set or sorted by the scalarized objective function score.

5.2 Stopping Criteria
The domain agnostic library provides four parameterizable stopping
criteria that determine when the optimizer should stop iterating and
return the results to the designer (Table 4). We derive three these
from common stopping criteria across our literature survey. The
fourth method introduces the concept of Pareto dominance: designs
that cannot improve individual objectives without trading off other
objectives. By stopping when many iterations have not returned a

Table 4: Programmer parameterizable stopping criteria

Stopping Criteria Programmer’s
Parameters Definition

Exhausted Iterations 𝐼 : maximum iterations Returns true when the 𝐼 is reached.
Matched
Threshold Score

𝑁 : Design count
𝑠: threshold score

Returns true when 𝑁 designs have been
generated with Objective Function scores ≥ 𝑠

Scalarized Objective
Function Converged

𝐼 : iterations
Δ: score changes

Returns true if 𝐼 iterations have passed with no more
than Δ difference in Scalarized Objective Function Scores

Pareto Set Converged 𝐼 : iterations
Δ: score changes

Returns true if 𝐼 iterations have passed without discovering
a design that dominates the prior design (i.e., 𝑑′ ⪯ 𝑑).
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Pareto dominant design, this stopping criteria returns results when 
a region of the Pareto set has likely been discovered. Each stopping 
criteria is a function that, given the design population, will return 
true if the optimizer should stop. It is trivial to construct a variety of 
more complex stopping criteria by logically combining the results of 
these categories. For instance, we may want to continue searching 
for a local-maxima after a threshold score has been met. To do this 
we can combine the results of a threshold and convergence stopping 
criteria so it only stops when both criteria are met. Similarly, we 
can set the optimizer to stop at a maximum number of iterations by 
returning the value of the combined stopping criteria (i.e., threshold 
and convergence) or an exhausted-iterations stopping criteria. 

5.3 Design and Modifer Selectors 
Selecting a design and modifer are critical steps in each iteration 
of an optimizer and defne the metaheuristic method. Particularly 
in bumpy domains with many local maxima, randomness is in-
troduced into this process. These methods are non-deterministic 
and this makes it difcult to identify strategies that will efciently 
satisfce the designer’s needs. By switching out pluggable design 
and modifer selectors, programmers can test a variety of methods. 
Additionally, a narrow subset of these selectors can be accessed by 
curious domain experts and designers through a GUI (Figure 5). 

Design and modifer selectors follow the same procedure shown 
in Algorithm 3. The optimizer inputs a set of values sorted by the 
programmer’s criteria. Sorting functions are specifc to either de-
sign or modifer selection. Additionally, a selector is defned by a 
selection probability function, � . In many cases this function re-
turns a static probability threshold. Some metaheuristic methods 
use more complex probability functions. For example, simulated 
annealing increases the probability of selecting high-performing 
designs as the number of iterations increases (i.e., the size of the 
design population). This cooling function will converge on a high 
scoring region later in the optimization process. OPTIMISM in-
cludes a variety of parameterizable cooling schedules based on 
existing methods [10]. The selector creates a probability threshold 
by passing the current state of the design population and heuristic 
map to the probability function. Given this probability threshold, 
each value is considered in the sorted order. If a random variable is 
less than or equal to the threshold, the current value is selected. If 
the threshold is never met the last value in the sorted set is selected. 

5.3.1 Design Selectors. Design selection is critical to the optimiza-
tion process. An optimizer that chooses high scoring designs quickly 
climbs towards a local maximum, but can miss distant, higher-
scoring regions. Alternatively, choosing a design randomly will 
jump to a new regions but will not climb to a local maximum. Stan-
dard optimization algorithms balance between selecting quality 
designs and randomly searching by considering factors such as 
how long the optimizer has been running, the quality of previously 
discovered designs, and how often each design has been visited. 
OPTIMISM’s library of design selectors provides a general, domain 
agnostic strategy for managing these trade-ofs. 

The primary way to customize design selectors is by changing 
the sorting order of the designs. Most often we choose a design 
with a bias towards those that are performing the best. This is true 
for a variety of standard metaheuristic methods (e.g., evolutionary 

Hofmann et. al., 

1 Input ������: The set of designs or modifers to select from 
2 Input � : A probability function to set the selection 

threshold 
3 Input ���� : A sorting function for the values 
4 Output �����: A selected design or modifer to use in the 

optimizer iteration �ℎ���ℎ��� ← � (D, H) ; 
5 ������_������ ← ���� (������, D, H) ; 
6 for � ∈ ������_������ do 
7 �̂ ← random value between 0 and 1; 
8 if �̂ ≤ �ℎ���ℎ��� then 
9 return � ; 

10 end 
11 end 
12 return last value in ������_������ ; 

Algorithm 3: Selector Algorithm 

methods [52]). This is done by sorting the designs from highest to 
lowest objective function scores. Programmers can further refne 
this by sorting by individual objective scores (e.g., Guided Local 
Search [137]). Other metaheuristic methods (e.g., Tabu search [55], 
ant-colony optimization [46]) select designs based on their visita-
tion history. For these cases, the population can be sorted based on 
how many times the same design was generated. Similarly, we can 
bias the selector towards recent designs by sorting by the iteration 
that generated each design (e.g., iterative local search [93]). 

5.3.2 Modifier Selectors. While design selectors ofer a variety of 
strategies for jumping around the discovered search space, the opti-
mization process is only as diverse as the designs that are generated 
by modifers. Each modifer in the heuristic map will generate a 
neighboring design to the currently selected design. Modifer se-
lectors decide which neighbor to generate and add to the design 
population. Choosing a modifer with each iteration is independent 
from design selection, but equally important. Modifer selectors se-
lect (see Algorithm 3) modifers from the heuristic map. OPTIMISM 
ofers three sorting values (� (�)) for modifers. 

Actual Value. A modifer’s actual-value measures the diference 
between the current design’s objective function (Equation 4) or 
individual objective (Equation 4) scores. Since this requires the 
execution of each modifer the resulting designs are cached and 
used once a modifer is selected. 

� (�) = � (�(�)) − � (�) (4a) 

� (�) = � (�(�)) − � (�) (4b) 

Expected Value. To avoid executing all modifers we estimate how 
much a modifer will improve the design using Equation 2 and the 
heuristic weights. The expected values can serve as the probability 
of state changes in methods such as Monte-Carlo Markov chains. 

Historical Value. The design population tracks both the changes 
in objective scores and which modifers are used to create designs. 
From this information, we can keep track of how often, and by how 
much, each modifer has improved prior designs. Just as we did 
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1 op t im i z e r = Opt im i ze r ( r e g i s t r y . heur i s t i c _map , 
2 b i a s e d _ t owa rd s _b e s t _d e s i gn , 
3 r e a ch ed _ t h r e s ho l d _ s c o r e , 
4 b i a s ed _ t o _expe c t ed _be s t _mod ) 
5 d e s i g n _popu l a t i o n = op t im i z e r . o p t im i z e ( [ Cookie ( ) ] ) 

Figure 4: Sample Optimizer Metaheuristic confguration. 

Figure 5: GUI for adjusting metaheuristics. 

in the heuristic map tuning algorithm (see Algorithm 2), we can 
use this information to estimate the probability that a modifer will 
improve the design (see Equation 3). This sorting criteria is useful 
for implementing methods like Ant-Colony optimization where we 
want to bias modifer selection towards those that have a history 
of improving designs. 

6 DEVELOPING WITH OPTIMISM 
Once the domain expert and programmer has implemented a de-

sign representation and heuristic library, confguring an optimizer 
only requires the programmer to assign a stopping criteria, de-
sign selector, and modifer selector (Figure 4). Programmers choose 
these components from OPTIMISM’s library and can refne their 
behavior by adjusting their parameters. Notably, building diferent 
optimizers only requires a change in these pluggable components 
and no new code. Figure 5 shows a simple GUI for switching out 
design selectors, this gives curious domain experts and designers a 
limited ability to adjust metaheuristics, however they cannot ad-
just selector parameters without programming. In most cases, we 
expect programmers will do this work directly in code. 

Because it is easy to create a wide variety of optimizers with dif-
ferent combinations of metaheuristics, the new challenge is to fnd a 
satisfcing optimizer. The programmer must try out diferent meta-
heuristics until they fnd one that converges, at least, faster than a 
designer could manually produce a design and results in designs 
that are, at least, as good as what designers produce. To make this 
process easier, we provide a evaluation tools to experiment with dif-
ferent optimizers. The frst tool runs an optimizer many times with 
random scalarizations of the objectives and collects the resulting 
scores and convergence times. Using this data, programmers can 
compare the efcacy and efciency of many diferent optimizers. 
We use this in our demonstrations to compare diferent optimizers 
in the domains. The second evaluation tool collects the discovered 
Pareto set from many runs of an optimizer with random scalariza-
tions, similar to an all-weighted sums method for estimating the 
Pareto front. This enables programmer to examine the trade ofs 
between diferent objectives and compare how efectively diferent 
optimizers discover the Pareto set. Figure 6 shows a visualization 
of the Pareto front of chewy vs cakey cookies. 

Figure 6: Discovered Pareto front of cookie objectives. 

Figure 7: GUI for displaying optimization results and sample 
cookies generated with diferent objective functions. 

7 DESIGNING WITH OPTIMIZERS 
The optimizers produced by teams of domain experts and program-
mers capture and represent substantial expertise. While designers 
can use default objective functions and heuristic maps provided by 
the domain expert, we expect they will often have domain expertise 
and will use OPTIMISM’s GUI to modify the search process. The 
key diference between domain experts and designers is that de-
signers do not have access to a programmer. They cannot program 
new objectives or modifers, nor can they change the design repre-
sentation structure. Any designer could use Chef Alton’s optimizer 
with minimal expertise, however a curious and clever baker could 
also recombine objectives and heuristics to generate new cook-
ies. For example, using objectives that measure solidity of fat and 
require higher acidity to create pufy cakey cookies [25]. Mixing 
and matching low-level objectives and heuristics gives designers 
greater fexibility in what the optimizers can produce. Designs gen-
erated by an optimizer are displayed in a table sorted by objective 
function scores (Figure 7). Designers select the results to view them 
in a domain specifc format (e.g., cookie recipes, web pages, 3D 
models, vector graphics, knitting instructions). More advanced vi-
sualizations of the optimization results are left to future work (e.g., 
visualizing the Pareto set). 
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Table 5: Summary of fnal optimizer confgurations across all demonstrative tools. 

Demonstration Design-Selector Modifer-Selector Stopping-Criteria 

Cookies Best Design Expected Best Modifer Pareto set has not changed in 100 iterations 

Cataract Lenses Highest score wtih increasing probability Best-known modifer with 85% probability Converge after 10 iterations with <5% change 
Splints Highest score wtih increasing probability Expected Best Modifer Reached threshold 95% perfect score 
Tactile Graphics Highest score with 85% probability Modifer with greatest history of success 1000 iterations 
Tile-Decors Highest score with increasing probability Best-known modifer for most important objective Reached threshold 95% perfect score 
Knitting Highest score with 85% probability Expected best modifer with 85% probability 10,000 iterations 

8 DEMONSTRATIONS 
We used OPTIMISM to build fve domain specifc optimizers, two 
of which have been published in prior work [67, 68]. Each domain 
is built on the domain expertise of non-technical experts which we 
source by analysing design patterns from online communities [64], 
collaborating with researchers and users in the domain [67], and by 
building on prior community engagements [69]. In our evaluation 
of these demonstrations we will refer to objective function scores 
as percentages of the maximum possible score (i.e., score of 1 on all 
objectives) to normalize the results across many diferent domains 
and objective functions. The fnal confgurations of each optimizer 
are shown in Table 5. 

8.1 Cataract Lens Selection 
We recruited David, an Ophthalmologist, and Brian2, a program-
mer, to build an optimizer that selects prosthetic lenses for cataract 
surgery. Over two weeks they coordinated by email to build their 
optimizer. As David explained, choosing a lens depends on a vari-
ety of factors such as patient outcomes, available lenses, and error 
tolerances. Cataract lens are defned by an a-constant dependent on 
lens models, and an inter-ocular-lens power (IOL) which comes in 
0.5 increments. Brian implemented this design representation with 
two parameters. David explained that he assesses lenses based on 
a variety of formulas [63, 118] that predict the patient’s resulting 
refraction value (i.e., their glasses prescription). These formulas 
will predict diferent values and David weights them depending 
on information about the patient. Brian encoded these formulas 
as objectives that compare the predicted refraction to David’s tar-
get refraction. Brian implemented three modifers that chose a 
random a-constant from available models and incremented/decre-
mented the IOL. We provided Brian with example code from other 
demonstrations and we were available to answer his questions 
about implementing the library and optimizer over email. After 
some trial and error, he chose a default design selector that sorts 
design by objective function scores and selects designs with increas-
ing probability over time. His modifer selector sorts modifers by 
their actual-value and selects with a static 85% probability. He uses 
actual-values instead of expected-values because he felt that this 
would increase David’s confdence in the results and came at little 
cost to efciency since his three modifers are very fast. He used 
a convergence stopping-criteria that halts when 10 samples have 
stayed with in a 5% diference of objective function scores. 

2Participant selected psuedonyms 

Brian and David had no prior experience implementing meta-
heuristic optimizers. Despite their lack of experience, their opti-
mizer selected appropriate lenses. David provided de-identifed 
patient data and lens selections for 10 prior patients. We compared 
his choices and those made by the optimizer. OPTIMISM selected 
the same a-constant with 100% accuracy and the correct IOL with 
80% accuracy. In the two samples where the IOL difered from 
David’s decision, it was by a single increment. David explained that 
this was a safe margin of error similar to the diferent choices two 
Ophthalmologists would make. Further, in the two cases where the 
optimizer difered from David, his choice was the second highest 
scoring option and visible to him in the GUI. 

8.2 Occupational Therapy Splints 

Figure 8: Splints are thermoformed to the patient’s hand. 

OPTIMISM’s modifable objective functions can enable an Occu-
pational Therapist (OT) to customize splints to a patient’s needs. 
We built a thumb splint optimizer based on feld notes from a six 
month feld study in OT clinics [69]. We represent splints with a set 
of parameters from a standardized splint pattern used by those OTs. 
We provide modifers that increment and decrement each parameter 
by 1mm and derived objectives based on the OT’s expertise: 

Fit to Patient. The smaller the diference between a splint’s pa-
rameters and corresponding patient measurements, the better it will 
ft. Fit is critical for ensuring splints properly restrict movement. 

Restriction. Splints restrict movement of specifc joints to support 
healing. OTs estimate the restriction by the width of the wings of 
the splint. Increasing width increases restriction. 

Durability. Splints are more likely to break where wider wings 
and cooling holes introduce material strain. OTs estimate durability 
with cooling-hole density and inversely to the wing widths. 

Comfort. Restriction and durability reduce comfort which leads 
to abandonment. OTs estimate comfort by the density of cooling 
holes and reductions of the lower-wing which can irritate the wrist. 
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Figure 9: Percentage of perfect score across Uniform (U), 
Automatic (A), and Expert’s (E) weights. 

By changing the objective weights, we can quickly customize 
splints. Traditionally, OTs will spend at least one entire patient 
appointment manually sizing a splint. This optimizer generates the 
same sizing data in less than a second, allowing the OT to focus on 
other important aspects of patient care. Figure 8 shows two splints 
generated using the same patient measurements. The left splint has 
an increased weight on the restriction objective which resulted in 
wider wings. The right splint decreased this weight and increased 
the weight on comfort, causing the lower wing to narrow. Using 
this optimizer, OTs could easily produce a variety of splints to test 
out with patients. 

Heuristic weights play a signifcant role in optimizer results 
because they express the relationship between objectives and modi-
fers. To demonstrate this, we compared three splint heuristic maps 
across 100 optimization trials using our evaluation tool. One heuris-
tic map used weights we inferred from our study notes. The second, 
used weights by seeding our heuristic map tuning method with 
the sample splints created by the OTs. The third weighted all ob-
jectives and modifers equally. Figure 9 shows how each of these 
heuristic maps performed. A Welch’s Anova tests shows a signif-
icant (� = 439.79, � < 0.01) efect on the splints’ objective scores. 
A Games Howell Post-hoc analysis shows a signifcant diference 
(� < 0.01) between the expert and uniform (� = 29.3) and tuned 
and uniform (� = 29.2) conditions, but not the expert and tuned 
conditions (� = 0.9). This shows the value of expressing domain 
expertise directly through heuristic maps or indirectly by seeding 
our heuristic map tuning algorithm. 

The splinting domain demonstrates the value domain experts 
designing heuristics. While there may be a more efcient or efec-
tive optimization methods, we were able to build a splinting tool 
that produces satisfcing results based on a description of the splint 
design process. By structuring the optimization around heuristics, 
we can embed the OT’s design process into a tool. This reduces 
manual iterations across many appointments to an optimization 
that consistently converges in under a second. The resulting design 
is ready to print and provide to the patient. Further, OPTIMISM’s 
multi-objective structure enables the OTs to quickly explore ob-
jective trade ofs either by browsing the Pareto set after a single 
optimization or by adjusting weights and running the optimizer 
multiple times. 

8.3 Tactile Graphic Optimization 
Beyond customizing objective functions, modifying heuristic strate-
gies can have signifcant benefts. In this demonstration we discuss 

Figure 10: Sample optimized tactile maps optimized for 3D 
printing and machine embroidery techniques. 

prior work on Maptimizer [67], a tool built with OPTIMISM that 
generates tactile maps that support blind navigation (Figure 10), 
and a modifcation of its underlying optimizer to create a new tool 
for optimizing machine embroidered tactile graphics [122]. Mapti-
mizer was developed by an interdisciplinary team of programmers 
and accessibility experts. These tools give blind designers signif-
cant control over the optimization of tactile graphics so that they, 
without the help of a programmer, can express what information 
is most critical to them (objectives) and how to best represent that 
information (modifers). Each designer will have diferent priorities 
and preferences that they can express by changing objective and 
heuristic weights. In this optimizer, objectives measure how much 
high-value information is included in a graphic, how well specifc 
pieces of information are conveyed, and how cluttered the graphic 
is. For implementation details refer to [67]. 

In the prior study of Maptimizer [67], six blind designers pro-
vided objective and heuristic weights in a simple web form, a pre-
cursor to OPTIMISM’s automatically generated GUI. The resulting 
maps generated with these weights produced maps that were opti-
mized for each individual participant and for four unique locations. 
In a variety of navigation tasks, the optimized maps out performed 
both manually customized maps and standardized maps. Without 
being able to reconfgure objectives and heuristics, the resulting 
maps could not adapt to each participant’s needs. 

OPTIMISM’s fexibility enables domain experts and program-
mers to easily expand the scope of existing optimizers. Two un-
dergraduate researchers who were not involved in the creation 
of Maptimizer (A8, A13), were able to create a new optimizer to 
generate tactile graphics optimized for machine embroidery us-
ing Maptimizer’s optimizer code. They did this by programming 
new objectives that ensured the graphics have continuity of em-
broidered texture across designer-specifed regions and contrast 
between overlapping and neighboring regions. Additionally, they 
modifed the original 3D printed tactile graphic representation to 
generate SVG for machine embroidery. These simple additions sub-
stantially expanded the scope of the original tool to accommodate 
a new manufacturing technique. Usually, modifying a generative 
design tool to accommodate a new manufacturing technique with 
unique constraints would require substantial efort but by factoring 
objectives and modifers specifc to tactile graphics and 3D printing 
into separate sections of the heuristic map, A8 and A13 had little 
difculty extending the system. 
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Table 6: Tile-decor optimizer configurations. A-D vary design selector. D-G vary modifier selector. G was the best optimizer

Optimizer Design-Selector Modifier-Selector

A Select random design Select modifier with highest expected value
B Select highest scoring design Select modifier with highest expected value
C Select highest scoring design with 0.85 probability Select modifier with highest expected value
D Select highest scoring design with probability increasing with iterations Select modifier with highest expected value
E Select highest scoring design with probability increasing with iterations Select best-known modifier for objective function
F Select highest scoring design with probability increasing with iterations Select best-known modifier for lowest scoring objective

G Select highest scoring design with increasing probability Select best-known modifier for most important objective

Figure 11: Chen et al’s [32] original tile decor (left) and our
equivalent tile decor (right)

8.4 Replicating Tile-Decors
In this demonstration, we replicate Chen et al’s [32] heuristic based
optimization of “objects composed of connected tiles” and increase
its efficiency and efficacy with OPTIMISM. Like OPTIMISM’s ob-
jective functions, their objective function is a weighted scalariza-
tion of four objectives: minimize neighborhood distance, maximize
surface approximation, maximize hinge-placement, and minimize
repulsion. They apply four modifications: randomly placing tiles,
attracting tiles, repulsing tiles, and scaling tiles. We have replicated
this method without OPTIMISM and created seven OPTIMISM
optimizers that used different metaheuristics.

Table 7: Results of Games Howel Post-hoc analysis compar-
ing tile decor experiments. *Indicates significance (p<0.05).

A B C D E F G
A Score -0.2 4.8* -0.1 0.6 0.2 0.6
A Time 0.6 -3.02* 0.8 -0.4 -1.4 1.5
B Score -0.2 5.3* 0.1 0.8 0.4 0.8
B Time 0.6 -3.5* 0.2 -1.0 -2.0 1.0
C Score 4.8* 5.3* -5.6* -4.4* -4.8* -4.9*
C Time -3.02* -3.5* 3.6* 2.6 1.7 4.1*
D Score -0.1 0.1 -5.6* 0.8 0.4 0.7
D Time -0.4 -1.0 2.6 -1.1 -2.1 0.7
E Score 0.6 0.8 -4.4* 0.8 -0.4 -0.1
E Time -1.4 -2.0 1.7 -2.1 -0.9 1.8
F Score 0.2 0.4 -4.8* 0.4 -0.4 0.4
F Time -1.4 -2.0 1.7 -2.1 -0.9 2.7
G Score 0.6 0.8 -4.9* 0.7 -0.1 0.4
G Time 1.5 1.0 4.1* 0.7 1.8 -1.4

By plugging in different design and modifier selectors we were
able to test metaheuristic strategies without modifying the domain
specific code. Using our evaluation tool, we conducted seven ex-
periments (Table 6) where we generated a packed, cylindrical, tiled
surface (Figure 11) for 100 optimizations. We kept the stopping
condition constant, halting the optimization when a tile-decor was
discovered that achieve 95% of a perfect objective score or 10000 iter-
ations were exceeded. The first four experiments vary the modifier
selector (Table 6 A-D). A Welch’s Anova showed a significant effect
of varying the modifier selector (𝑝 < 0.01) on scores (𝐹 = 17.4)
and optimization time (𝐹 = 4.6). We then varied design selectors
(Table 6 D-G) and a Welch’s Anova showed no significant effect on
score (𝑝 > 0.1, 𝐹 = 0.3) but did find an significant effect on time

(a) Convergence time in seconds.

(b) Percentage of perfect scores.

Figure 12: Comparison of different metaheuristic configura-
tions by time and score. Experiment descriptions in Table 6
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(� < 0.05, � = 3.1). A Games Howell post-hoc analysis the shows 
diferences across experiments (Table 7, Figure 12). In comparison 
to our replication of Chen et al’s original algorithm (Figure 13a, 
13b), our optimizer converged on signifcantly (� < 0.01) higher 
scores (� = 39.8) and converged signifcantly faster (� = −16.12) 
based on a Welch’s T-test. Further, experimenting with diferent 
metaheuristics gave us unique insights into the optimization prob-
lem. Unlike, Chen et al’s staged optimization method, our optimizer 
switched between increasing diferent objectives with each iter-
ation. This revealed a trade-of between attraction and repulsion 
objectives that is poorly supported by a multi-stage method. 

(a) Convergence time in seconds. 

(b) Percentage of perfect Score. 

Figure 13: Box plots comparing OPTIMISM (O) vs replicated 
(R) optimizers 

8.5 Optimizing Knitted Textures 
Our fnal demonstration examines an optimizer built with an early 
version of OPTIMISM, KnitGIST [68], which uses the strategies of 
hand knitters to generate complex, machine-knittable textures. Knit-
GIST exemplifes how OPTIMISM amplifes the expertise of the do-
main experts and programmers that build optimizers by making the 
a highly-re-confgurable optimizer accessible to non-programming 
designers. Since KnitGIST was implemented, OPTIMISM has been 
expanded to include pluggable and parameterizable metaheuristics 
(e.g., design selectors, modifer selectors, stopping criteria), a tun-
ing algorithm for defning heuristic maps, and an automatically 
generated GUI for confguring optimizers. However, KnitGIST still 
represents OPTIMISM’s core optimization structure in a complex 
domain where designers need re-confgurable optimizers to gener-
ate functional and attractive designs. 

Knitters design these patterns by considering the complex rela-
tionship between diferent stitches and their physical and aesthetic 
properties (e.g., curl, elasticity, opacity, color). For example, knitters 
will tediously switch the orientation of stitches to afect elasticity 
and curl. Similarly, knitters change the color of stitches to create col-
ored images (Figure 14), a new addition to the KnitGIST heuristic li-
brary. However, the manual process of adjusting textures to achieve 
these properties is often tedious and difcult. KnitGIST’s heuristic 
library has the most programmatically complex objectives of our 
demonstrations (e.g., estimations of physical properties, a decision 

Figure 14: KnitGIST colorwork samples. 

tree classifcation of texture aesthetics). However, like other demon-
strations, it uses simple modifers derived from common design 
practice in the domain. KnitGIST amplifes knitters’ domain exper-
tise. Embedding knitters’ design strategies into KnitGIST through 
heuristic maps enables designers to manage the complex stitch 
structures without manual tweaking or programming. 

9 DISCUSSION 
OPTIMISM structure of metaheuristic optimizers gives domain ex-
perts a format to make their expertise explicit. Through the devel-
opment of our fve demonstrations and exemplar cookie optimizer 
we have developed a better understanding of what domains are 
best suited to OPTIMISM and the fexibility of this framework. 

9.1 Suitable Optimization Domains 
Our primary goal is to expand the role and agency of domain ex-
perts who help build optimizers. Through our demonstrations we 
have focused on domain experts in under resourced domains such 
as healthcare, accessibility, and craft communities because these ar-
eas are rarely the focus of optimization research. Even introducing 
small efciencies in the design process can have out sized impacts 
(e.g., increased time with patients). We observe that these designers 
often rapidly prototype by making small modifcations to designs 
and using rule-of-thumb objectives. Which modifcation comes 
with each iteration is guided by intuition. When these strategies 
are applied manually they are time consuming and designers are 
limited to the number of iterations they can do in a limited amount 
of time. Chefs tweak ingredient proportions [102]. Ophthalmolo-
gists examine diferent lens values. OTs trim splints [69]. Knitters 
switch out stitches [68]. OPTIMISM has limited support for domain 
experts in the development stage beyond the shared language of 
design representations, objectives, and modifers and the GUI for 
adjusting heuristics. There remains opportunities to defne design 
representations, objectives, and modifers without programming. 
While this may not be feasible across all domains, interfaces for 
visually programming parameterized designs or graph structures 
could build on OPTIMISM’s core optimization library. OPTIMISM 
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empowers domain experts to collaborate with programmers by 
providing a shared language and by trading guarantees about opti-
mality or efciency for greater expressive match to design practice. 
Heuristics make the relationships between modifers and objectives 
explicit while replacing designer’s intuition with metaheuristics. 

OPTIMISM may be amenable to domains where manual design 
practices are insufcient (e.g., tile-decors, knitted textures); how-
ever, OPTIMISM’s utility is more limited. Without clear design 
strategies, domain experts may need more technical expertise to 
use OPTIMISM. While many domains may require more complex 
solutions from programmers, our diverse set of demonstrations 
show how simple heuristics still produce useful tools. In most cases, 
objectives only compare or average a subset of design parameters 
and corresponding modifers increment and decrement these pa-
rameters. These easy to program objectives and modifers may not 
always be sufcient and programmers can provide more complex 
functions. The simplicity of these library elements has secondary 
advantages. First, they are easier for domain experts and designers 
to understand and reason about. Second, by using many simpler 
objectives and modifers, domain experts and designers can mix an 
match more elements in the GUI rather than relying on the pro-
grammer. Third, these are efcient methods and can be executed 
in many iterations without slowing the optimizer. OPTIMISM is 
not appropriate for domains that require slower heuristics (e.g., 
simulation, user-interaction). In cases where optimality is critical, 
OPTIMISM will not produce sufcient optimizers because meta-
heuristic methods cannot provide these guarantees. OPTIMISM is 
meant to lower the foor and entry barriers to optimization. OP-
TIMISM is complementary to existing optimization toolkits for 
convex [27], Bayesian [56], and multi-objective [23] optimization. 

9.2 Flexibility of Optimizers 
While heuristics have an expressive match to designer’s practices, 
programmers often struggle to fnd an optimization method or 
metaheuristic that matches a domain. Given the bumpiness and 
lack of convexity of many domains, it is unclear which methods 
will work best. The only option is to test many diferent meth-
ods and evaluate the difering results. Without the modularity of 
OPTIMISM, building each unique optimizer to test diferent meta-
heuristics is a substantial burden for programmers. OPTIMISM 
supports fexible prototyping of optimizers with re-confgurable 
metaheuristics and heuristics. Using simple evaluation tools that 
run many iterations of these optimizers with randomized objec-
tive weights, the programmer can evaluate the efects of diferent 
heuristics and metaheuristics on objective scores and convergence 
times. We demonstrated this in the construction and evaluation of 
splint and tile-decor optimizers. 

As a programming toolkit, OPTIMISM is a jumping of point to 
build more advanced optimization methods. By structuring objec-
tives as weighted set, we provide a common structure for multi-
objective optimization problems. Recall, that decomposition meth-
ods for exploring of the Pareto front (e.g., all-weighted sums method) 
require optimizers that search for solutions to specifc scalarizations 
of the multi-objective problem. As we showed with our Cookie op-
timizer, OPTIMISM has all of the components needed to implement 
these types of methods. The design population at the core of an 

optimizer and that is returned to the designer collects critical in-
formation from disparate design representations into a common 
format. With the the design population, programmers could build 
multi-objective optimization methods that make decisions based 
on objective scores, history of improvement, and Pareto dominance. 
Programmers could build these more advanced optimizers using 
the same heuristic structures they designed with domain-experts. 
The optimizers OPTIMISM currently produces are, alone, useful 
tools in new domains, however methods that produce many Pareto 
optimal results rather than results sorted by a weighted objective 
function will require advances in interactive decision making (e.g., 
[126]) and visualizations of the objective space (e.g.,[78]). 

10 LIMITATIONS 
We have evaluated OPTIMISM though independent case studies 
with varying degrees of involvement from programmers, domain 
experts, and programmers and at diferent stages in the implementa-
tion of OPTIMISM. The time needed to implement optimizers varied 
depending on the iteration of the toolkit. Indeed, limitations dis-
covered in prior work [67, 68] directly infuenced key features. For 
example, blind designers who used Maptimizer provided critical 
feedback that infuenced the design of the automatically gener-
ated GUIs. Ultimately, the last demonstration to be implemented, 
cataract lenses, was built in two weeks by a team that had no prior 
experience with OPTIMISM. The programmer, Brian, benefted 
substantially from optimizer patterns he observed in existing opti-
mizers and was able to adapt them to a novel domain without our 
support. Without further, longitudinal, case studies we are limited 
in our analysis of OPTIMISM’s learn-ability by diferent users or its 
expressive match to novel domains. Many of our demonstrations 
are motivated by prior work on clinical CAD tools [69] that are used 
by clinicians and people with disabilities. In these domains, it is es-
sential that extensive, iterative design practices be reduced to quick 
(e.g., under a minute) calculations and return only a few efective 
results. In prior work with people with disabilities and clinicians, 
its clear that that they would prefer one satisfactory result over 
the opportunity to—and burden of—evaluating many discovered 
designs with trade-ofs (e.g., the Pareto front) [65, 69]. However, 
this is not representative of all domains that OPTIMISM could be 
applied to and future research should expand to diferent domain 
experts and programmers with varied expertise in optimization. 

11 CONCLUSION 
We contribute a toolkit for building generative design tools in 
unique domains. OPTIMISM is designed to: empower domain ex-
perts in the collaborative process of building domain specifc opti-
mizers, support fexible rapid prototyping of optimizers, and pro-
duce satisfying and sufcient designs. Unlike other optimization 
toolkits, OPTIMISM separates the roles of programmers who im-
plement optimizers and domain experts who guide optimizers to 
good results. They do this collaboratively by building a library 
of heuristics that are applied by fexible metaheuristics that can 
accommodate a wide variety of domains. 
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